Brine Workshop How to make brine work for you!

Southwestern Pennsylvania Commission

Sam Gregory Buffalobílls1951 @gmaíl.com 717-903-8923

> *" If you are not willing to learn no one can help you. If you are determined to learn no one can stop you."*

Brine Workshop How to make brine work for you!

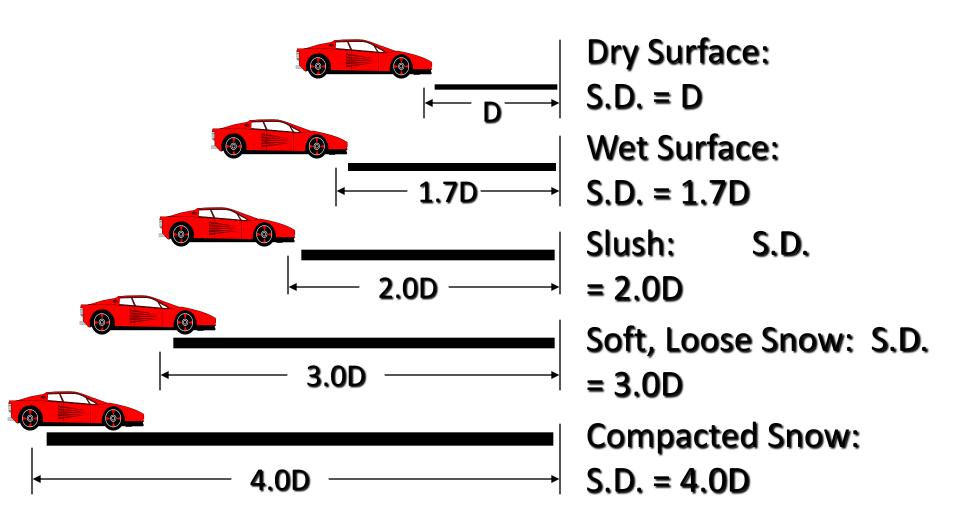
Southwestern Pennsylvania Commission

Topics

- Best Practices for an effective & efficient winter maintenance program
- How chemicals work
- Environmental concerns
- Anti-icing & Pre-wetting
- Sensible Salting Concepts

Why Winter Maintenance?

Snow Covered Roads


Unsafe Driving Conditions

Why Winter Maintenance?

- Slippery Snow-Covered Roads Create Havoc.
 - Vehicular crashes multiply
 - Congestion causes frustration & lost work
 - School closings & delays affect families
 - Emergency Operations are hampered
 - Businesses suffer lost profits

Stopping Distance

Creating a Winter Maintenance Plan

Goals and level of service for an effective & efficient operations

Liquid Chemicals "Another tool for your toolbox"

- Liquids
 - -Instant action
 - Not displaced by traffic
 - Residue remains effective
 - Versatile
 - Used directly
 - Treat solids

Brine Workshop

Chemicals: How do they work?

- Depress the freezing point of water, turning ice or snow into liquid or slush
- Solid salts dissolve to form brine solution

Brine Workshop

Chemicals: What do they do?

Chemicals applied to:

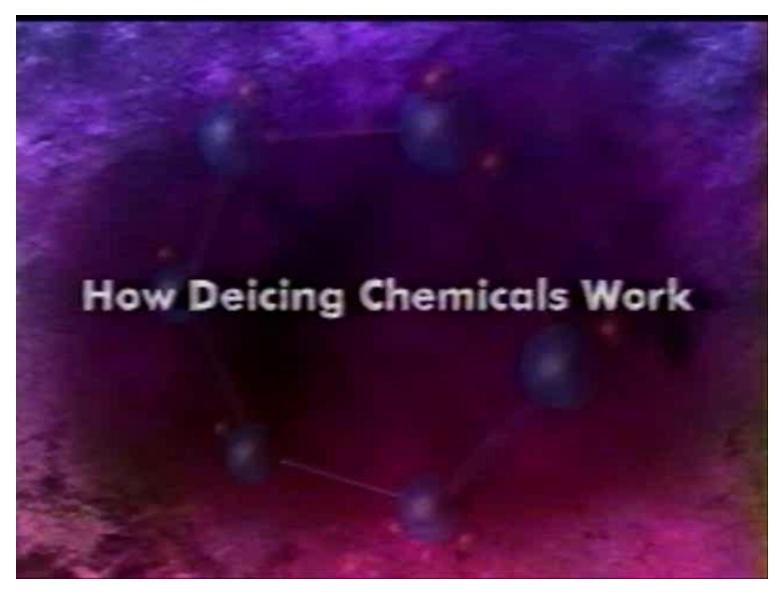
- prevent bonding of ice and snow to road surface
- prevent ice or frost from forming
- prevent buildup of snowpack
- melt ice that has formed

Brine Workshop

Chemical Terms

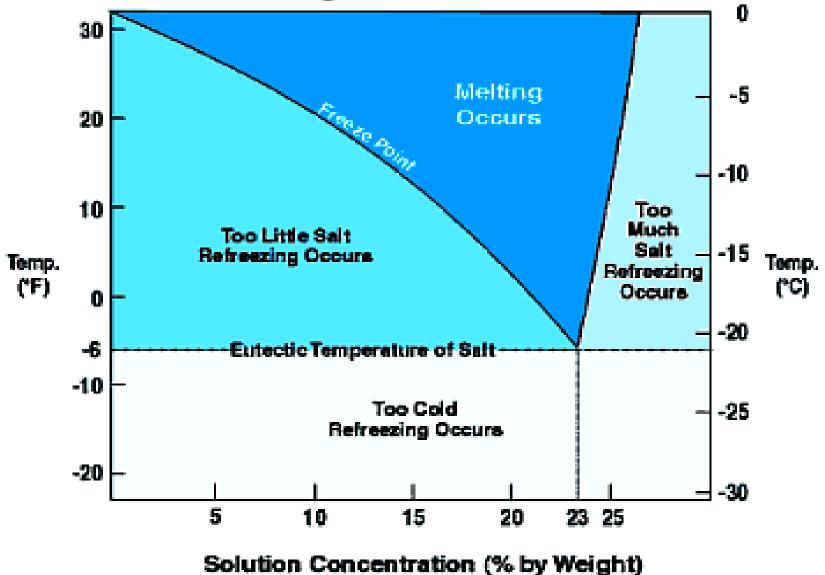
- Concentration
 - % by weight of chemical in solution
- Eutectic Temperature
 - Lowest Temp solution will melt ice
- Endothermic
 - Requires heat when going into solution
- Exothermic
 - Gives off heat when going into solution
- Hygroscopic
 - Draws water from the air

Common Road Treatment Materials

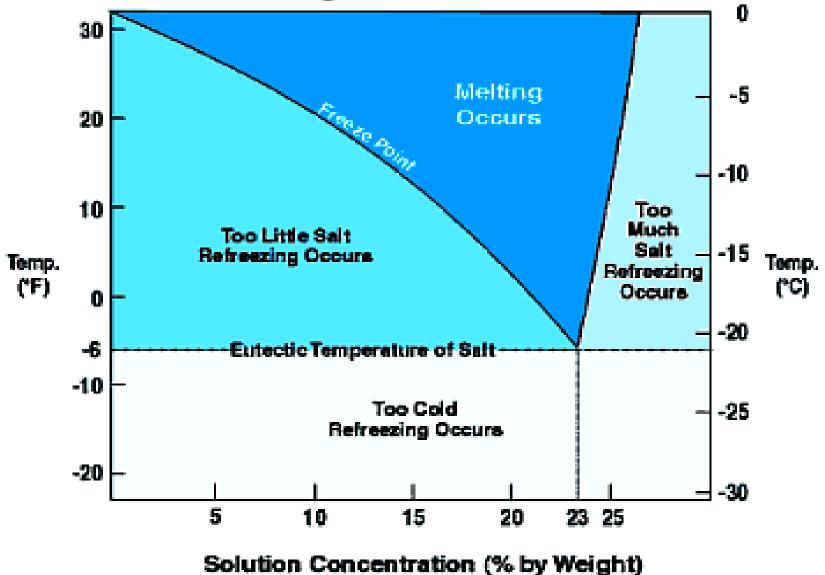

- Salt (Sodium chloride)
- Calcium Chloride
- Magnesium Chloride
- Potassium Chloride
- Brines (by-product of gas production)
- Potassium Acetate
- Calcium Magnesium Acetate
- Urea

Chemicals

- Agricultural By-products
- Other Proprietary Materials
- Abrasives


Natural Occurring Salts

Chemicals



Iowa Department of Transportation Video (click on picture to start)

Phase Diagram for Salt

Phase Diagram for Salt

Dilution of Solution

- Explains why one application rate will not fit all winter events.
- Application effectiveness will depend on:
 - Road surface temperature
 - Application rate
 - Concentration
 - Moisture

Solid vs Liquid Advantages

- Solids
 - -Less costly
 - Easier to handle
 - Dilute slower(retention)
 - Initial skid
 resistance (salt)

- Liquids
 - Instant action
 - Not displaced by traffic
 - Residue remains effective
 - Versatile
 - Used directly
 - Treat solids

Solid vs Liquid Disadvantages

- Solid
 - -Need moisture
 - Takes time
 - Not good for antiicing (bounce & scatter, displaced by traffic)

- Liquid
 - -Mostly water
 - Not useful for thick ice
 - Rain will wash off pavement
 - Can cause slippery conditions

Salt

Has been... (Sodium Chloride)

• ls...

Our #1 Deicer

"Use it sensibly!"

Salt: Advantages

- Melting action
- No cleanup (as with abrasives)

"Enhanced Safety & Reduced Liability"

Road Salt Basics for Sensible Salting

- The use of salt is an important part of strategies to keep roadways safe in the winter
- Any measure developed must never compromise human safety
- Options must be based on optimization of winter maintenance practices so as not to jeopardize road safety while minimizing the impact on the environment

Road Salt Basics for Sensible Salting

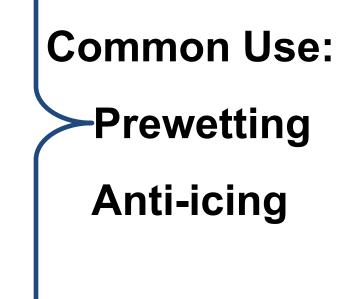
- Salt can result in adverse effects on the physical and chemical properties of soils
- Effects are associated with areas adjacent to stockpiles and roadsides
- Based on available data salts are entering the environment in a quantity and concentration that may have an immediate or long term harmful effect on the environment.

Characteristics of Salt & Melting Capacity

WHAT IS SMART SALTING?

THE RULE OF RIGHT

The <u>*RIGHT*</u> amount of The <u>*RIGHT*</u> material at The <u>*RIGHT*</u> time


Smart Salting

Characteristics of Salt & Melting Capacity

Pounds of Ice Melted Per Pound of Salt		
Temperature Degrees F	One Pound of Sodium Chloride (Salt)	
30	46.3 lb of ice	
25	14.4 lb of ice	
20	8.6 lb of ice	
15	6.3 lb of ice	
10	4.9 lb of ice	
5	4.1 lb of ice	
0	3.7 lb of ice	
-6	3.2 lb of ice	

Other Natural Salts

- Calcium Chloride
 Natural State Liquid
- Magnesium Chloride
 Natural State Liquid
- Potassium Chloride
 Natural State Solid

Other Natural Salts

- Calcium Chloride
 - Exothermic: gives off heat
 - Hygroscopic: attracts moisture
 - Eutectic Temp:
 -60°F
 - 30-33%
 concentration in solution

- Magnesium Chloride
 - Exothermic: gives off heat
 - Hygroscopic: attracts moisture
 - Eutectic Temp: -28°F
 - 22-26% concentration in solution

AGRICULTURAL PRODUCTS

BEET JUICE

- All natural, agricultural product
- Anti-icing @ 20 gallons/lane mile
- Mixed with salt brine lowers freezing point to -15F
- Prewetting agent
- Treat mix piles
- Less corrosive than salt brine

Eutectic vs Effective Temp

	Eutectic	Effective*
Chemical	°C °F	°C °F
NaCI (salt) sodium chloride	-21 -6	-9 +20
CaCl calcium chloride	-51 -60	-32 -25
MgCI magnesium chloride	-33 -28	-15 +5
KCI potassium chloride	-11 +13	-4 +25
KAc potassium acetate	-60 -76	-26 -15
CMA calcium magnesium acetate	-27 -17	-6 +21
Urea	-12 +10	-4 +25

Corrosion

- More corrosive
 - -<u>Calcium Chloride</u>
 - Sodium Chloride
 - Magnesium Chloride
 - -CMA
 - Urea
- Less Corrosive

MS4 Requirements & Environmental Stockpile

Pollution Prevention and Good Housekeeping for Municipal Operations

MCM #6 – Pollution Prevention...

3800-PM-BPNPSM0200h Rev. 4/2013 Sample Appendix A pennsylvania
B
DEPARTMENT OF ENVIRONMENTAL
PROTECTION
B

3 COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

MCM #6: Pollution Prevention/Good Housekeeping for Municipal Operations

The following are the requirements for MCM #6 that are included in the Federal Regulations:

- Develop and implement an operation and maintenance program that includes a training component and has the ultimate goal of preventing or reducing pollutant runoff from municipal operations (40 CFR Part 122.34(b)(6)(i)).
- Provide employee training to prevent and reduce stormwater pollution from activities such as parks and open space maintenance, fleet and building maintenance, new construction and land disturbances, and stormwater system maintenance (40 CFR Part 122.34(b)(6)(i)).

The following requirements, Best Management Practices (BMPs) and Measurable Goals are to be implemented and achieved:

Winter Material Storage and Use

- Material stored in buildings
- Containment
- •Run off control
- Impermeable pads
- •Clean up
- Equipment calibrated

Salt Brine

Overview:

- Salt brine use is a best practice for fighting winter storms
- Municipalities can use liquid fuels funds to purchase equipment to make brine
- Municipalities can sell brine to other municipalities

Salt Brine

Overview:

Cost of making salt brine includes

- Equipment
 - Brine maker
 - Storage tank
- Labor
 - Loader operator
 - Brine maker
 - Clean out of tank
- Materials
 - Salt
 - Water
 - Electricity

PennDOT Publication 447

Salt brine is now eligible for liquid fuels funds

MS-0470-0010

Salt Brine

I. DESCRIPTION — Salt Brine is a liquid mixture of potable water and approved Sodium Chloride.

II. MATERIAL— Approved Sodium Chloride is mixed with potable water in a specially designed machine which circulates the water through the salt, in one tank, to a holding tank which holds the finished product. The machine can be purchased from a vendor or can be constructed locally but must have two tanks. One for mixing and one for holding the finished product. When product is stored it must be remixed every thirty days, or before its use, or sale to insure the solution is in proper condition.

Salt Brine Making Process & Storage

Overview:

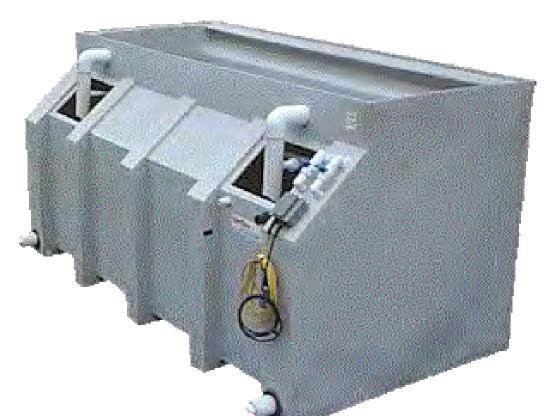
- Various methods have been used
- Batch Water passes through a bed of rock salt producing a solution saturated at the water
- Continuous Flow Water is forced under pressure through a bed of salt, solution flows into storage receptacle
- Brine strength is checked with a hydrometer or a salometer
- Rock salt can contain impurities
- Quality control is essential!

Salt Brine

Salt Brine Production Units % of concentration at

the eutectic

temperature


Hydrometer / Salometer Chart for Salt Brine (59°F)

%	Salometer	Hydrometer	Eutectic
Salt	Using	Specific	Tempature
	0 - 100%	Gravity	
0	0	1	32
1	4	1.007	31
2	7	1.014	30
3	11	1.021	29
4	15	1.028	27
5	19	1.036	26
6	22	1.043	25
7	26	1.051	24
8	30	1.059	23
9	33	1.067	21
10	37	1.074	20
11	41	1.082	19
12	44	1.089	17
13	48	1.097	15
14	52	1.104	13
15	56	1.112	12
16	59	1.119	9
17	63	1.127	7
18	67	1.135	4
19	70	1.143	2
20	74	1.152	0
21	78	1.159	-2
22	81	1.168	-4
23	85	1.176	-6
24	89	1.184	2
25	93	1.193	16
26	96	1.201	30
27	100	「「「「「「「「「「」」」」	32

Prewet Equipment: Salt Brine Production Units

- Commercial Units available
- Converts road salt to salt brine automatically

Salt Brine Making Process

Salt Brine Making Process & Storage

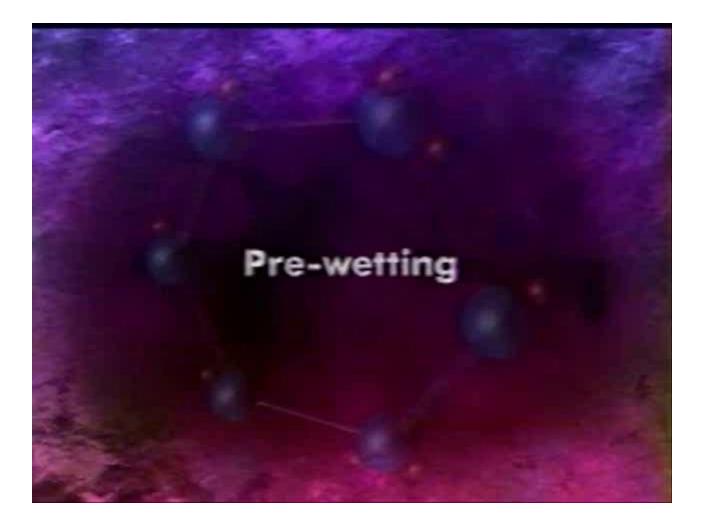
Storage of Liquid Deicers

Salt Brine Making Process & Storage

Liquid Storage tanks should have containment & or spill prevention plans

Containment may be the easiest means of Addressing pollution prevention

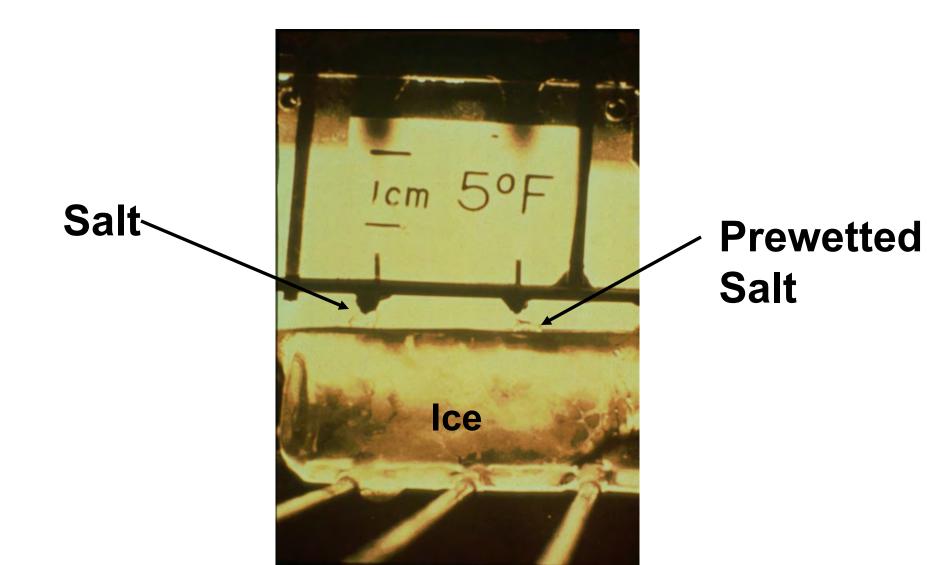
Handling of Liquid Deicers

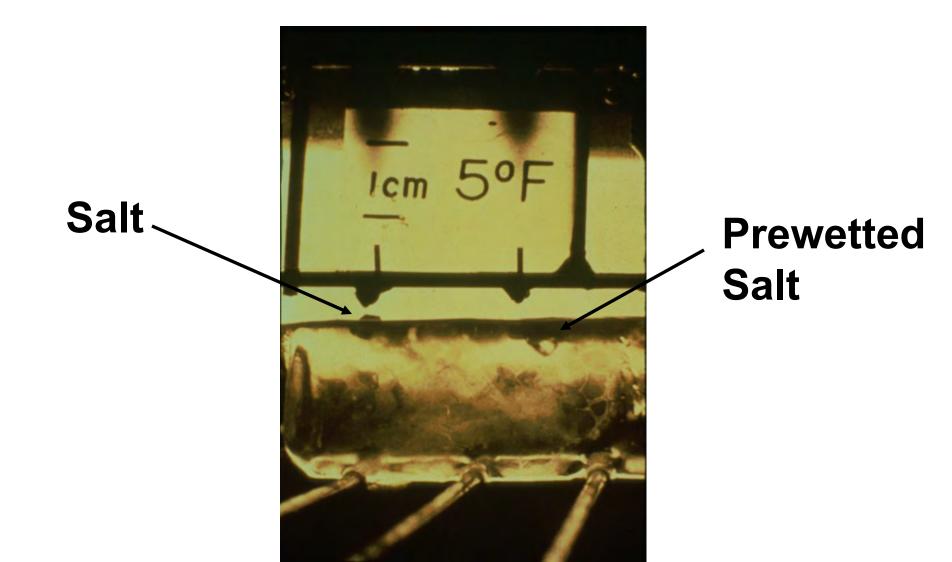


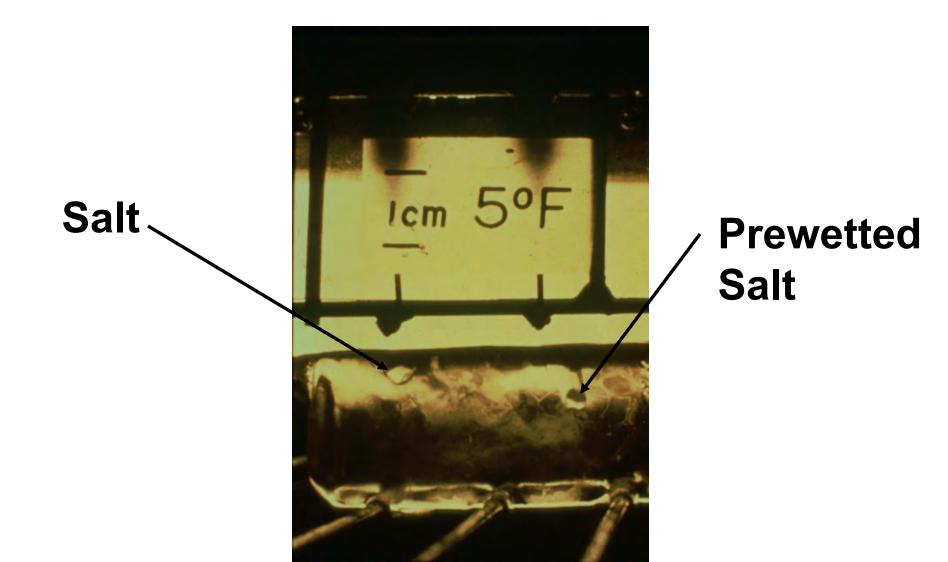
Prewetting Salt with Brines

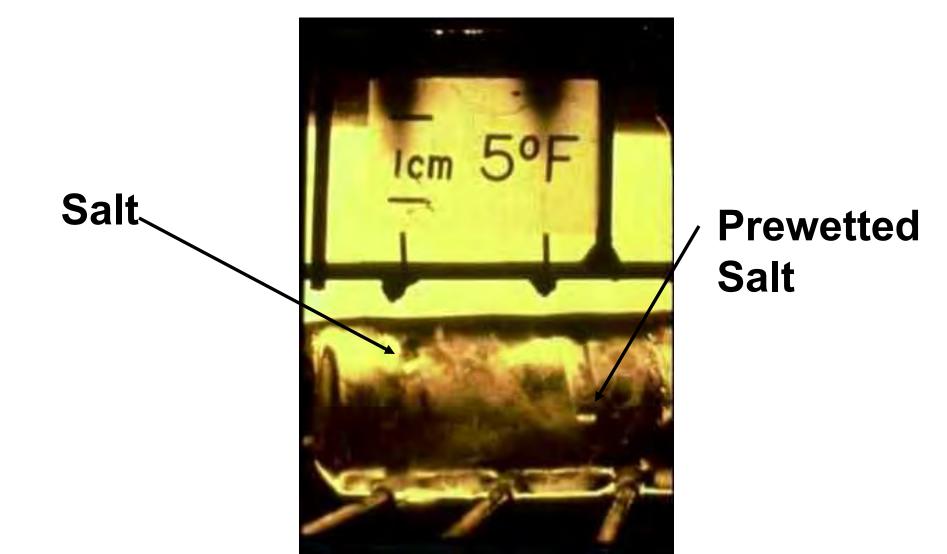
- Prewetted Salt: Salt which has been coated with a liquid solution prior to being spread.
- Prewetting solutions:
 - Sodium Chloride
 - Calcium chloride
 - Magnesium chloride

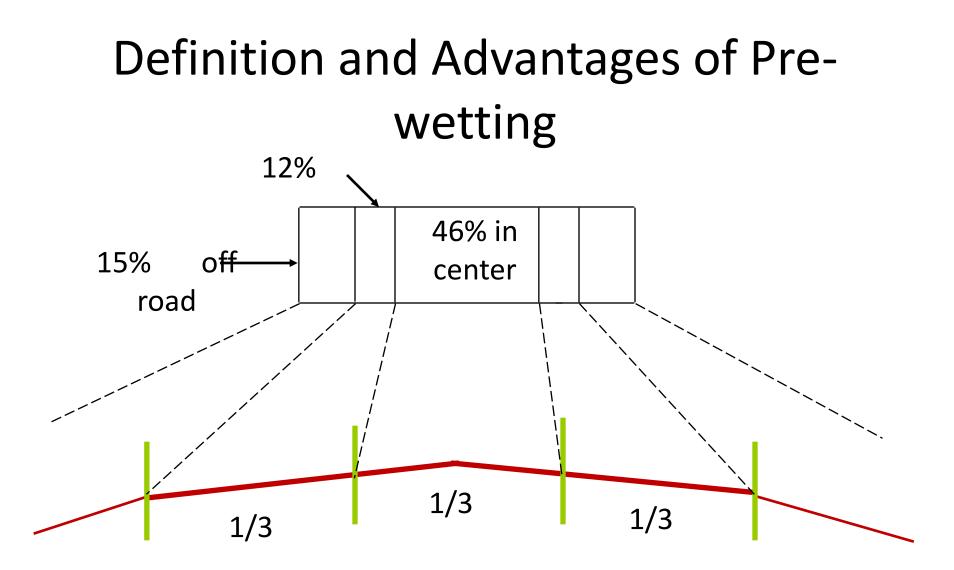
Prewetting Salt

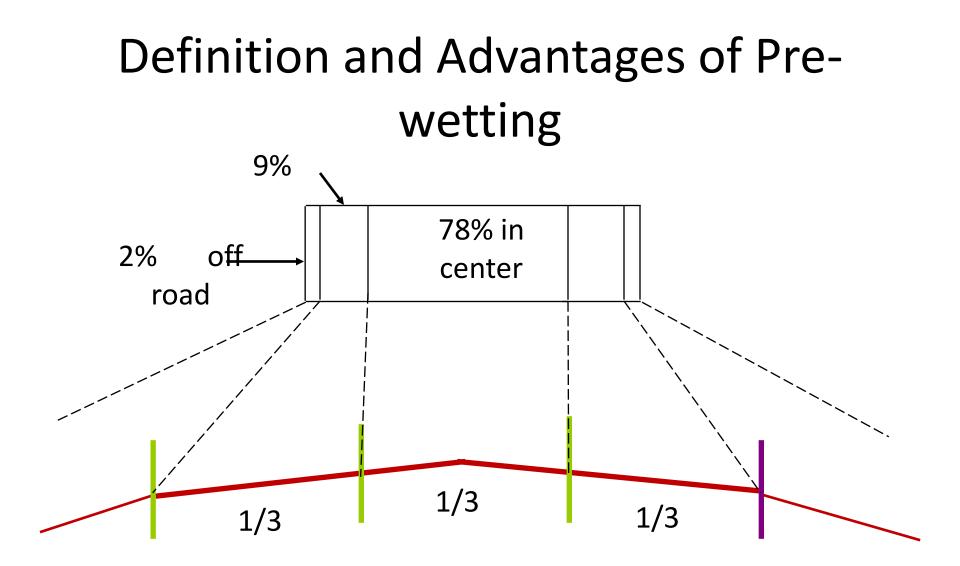

Iowa Department of Transportation Video (click on picture to start)


Definition and Advantages of Prewetting




Prewetting Salt: Benefits


- Less bounce & scatter
- Faster reaction time
- More effective melting action
- Less salt needed resulting in:
 - reduced costs
 - reduced environmental concerns



100% dry salt spread in center 1/3 of road

100% pre-wetted salt spread in center 1/3 of road

Example: Data

- Usage: 1000 Tons Per Year of Salt
- Cost of Salt: \$65.00 Per Ton
- Cost of Salt Brine: \$0.15 Per Gallon
- Rate: 10 Gallons Per Ton of Salt
- % Reduction of Salt: 26%

Material Cost Savings

- Amount of Salt Saved:1000 Tons x 26% = 260 Tons/Year
- Cost of Salt Saved:260 Tons x \$65.00/Ton = \$16,900
- Cost of salt brine used: 740 Tons x 10 Gal/Ton x \$0.15/Gal = \$1,110
- \$16,900 \$1,110 = \$15,790 savings

Material Cost Savings

- Annual Net Material Savings: \$20,500 - \$5,950 = \$14,550
- + Annual Labor Cost Savings:
 - -Less Salt to Spread
 - -Return Trips to Re-Salt Eliminated

Definitions and Advantages of Prewetting

Application Rates

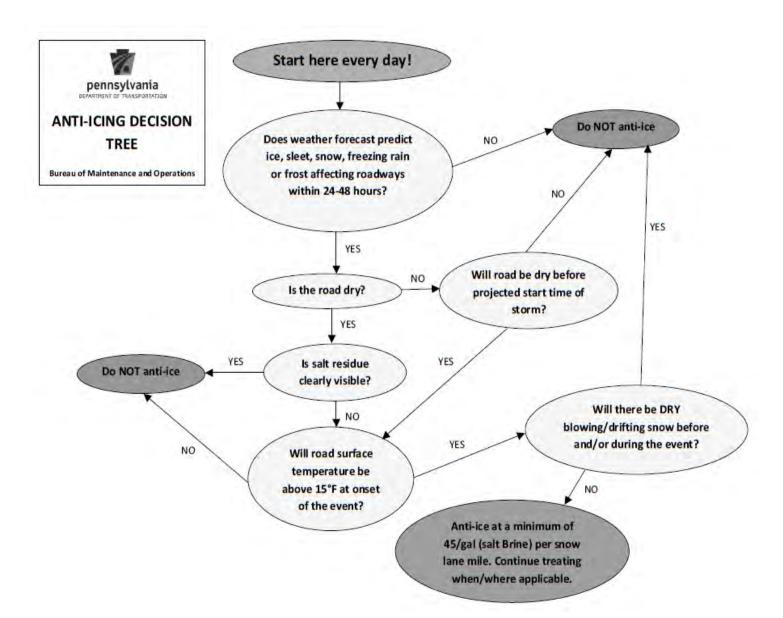
Pre-wetting Application Rates				
Liquid Chemicals at Eutectic Concentration	NaCl (Sodium Chloride)	MgCl ₂ (Magnesium Chloride)	CaCl ₂ (Calcium Chloride)	
Surface Temperature Above 25 ^o	Pre-wet with 8 to 10 Gallons/Ton	Not Recommended	Not Recommended	
Surface Temperature Between 0° and 25°	Not Recommended	Pre-wet with 6 to 8 Gallons/Ton	Pre-wet with 6 to 12 Gallons/Ton	

Pre-wetting Methods & Equipment

Pre-wetting Methods & Equipment

Anti-icing with Brines

Definition and Advantages of Anti-icing


Definition and Advantages of Anti-icing

Anti-icing

Anti-icing Decision Tree

Salt Brine, Additives, and Enhancers

Concentrations for Chemical Solutions				
NaCl (Sodium Chloride) 23.3% Concentration	MgCl (Magnesium Chloride) 21.6% Concentration	CaCl ₂ (Calcium Chloride) 29.8% Concentration		
2.3 lb. of Salt* per gallon of water	Proprietary liquid mixtures available containing 20% to 25% MgCl ₂	4.1 lb. of 77% Flake/Solid* per gallon of water. Proprietary liquid mixtures available.		

Salt Brine, Additives, and Enhancers

Brine Additive Solution Ratios				
NaCl (Sodium Chloride)*	NaCl (Sodium Chloride) with MgCl ₂ (Magnesium Chloride) Additive*	NaCl (Sodium Chloride) with CaCl ₂ (Calcium Chloride) Additive*		
No Additive	80% Sodium Chloride with 20% Magnesium Chloride	80% Sodium Chloride with 20% Calcium Chloride		

Salt Brine, Additives, and Enhancers

Approved Brine Enhancers

AQUASALINA+ http://naturesownsource.com/

BEET HEET CONCENTRATE http://www.ktechcoatings.com/

GEOMELT 55 http://snisolutions.com/

BIOMELT AG <u>http://snisolutions.com/</u>

AMP by EnviroTech Services <u>http://envirotechservices.com/</u>

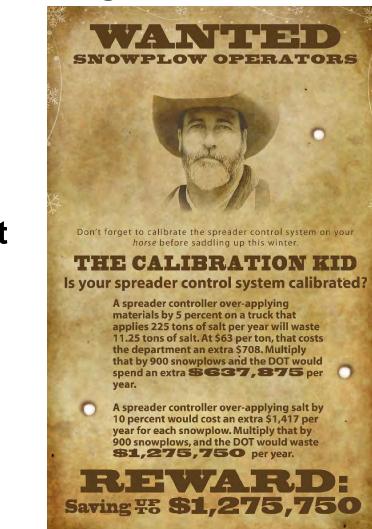
Tom Welker | Municipal Services Specialist PA Department of Transportation|Bureau of Planning & Research Municipal Research and Outreach Section | Research Division 400 North Street, 6th Floor | Harrisburg, PA. 17120 Phone: 717.783.3721 twelker@pa.gov

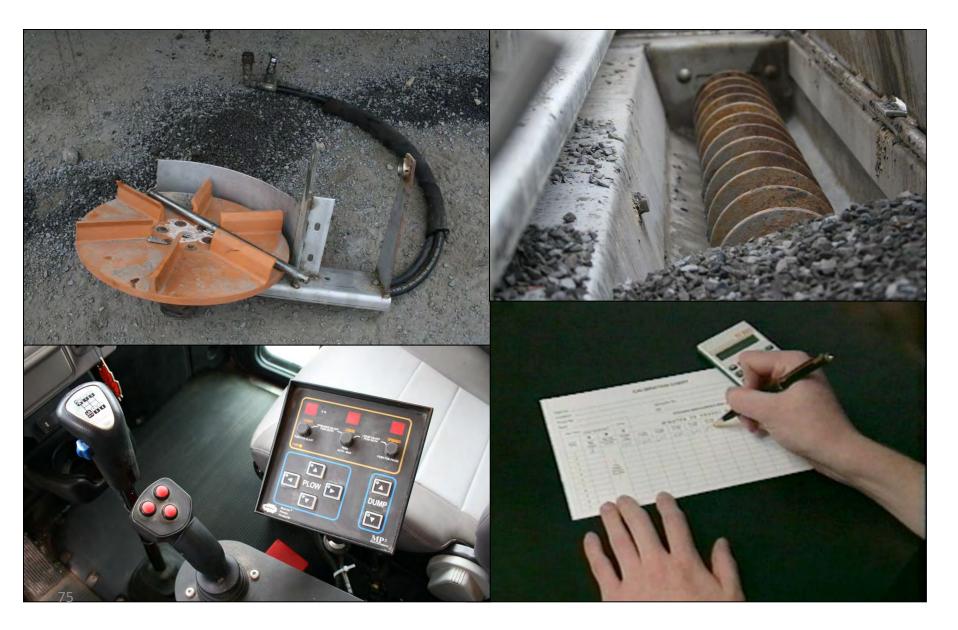
Anti-icing Application Rates

Anti-Icing Application Guidelines		
Liquid Chemicals	NaCL (Salt) 23.3%	
Relative Humidity	Any Snow Event	
Surface Temperature 25° and Above	45 Gallons per Snow Lane Mile	
Surface Temperature 15°-24°	64 Gallons per Snow Lane Mile	
Surface Temperature 14° and Below	Pre-treatment at lower temperatures could lead to trapping the first snow on the roadway surface and is not recommended.	

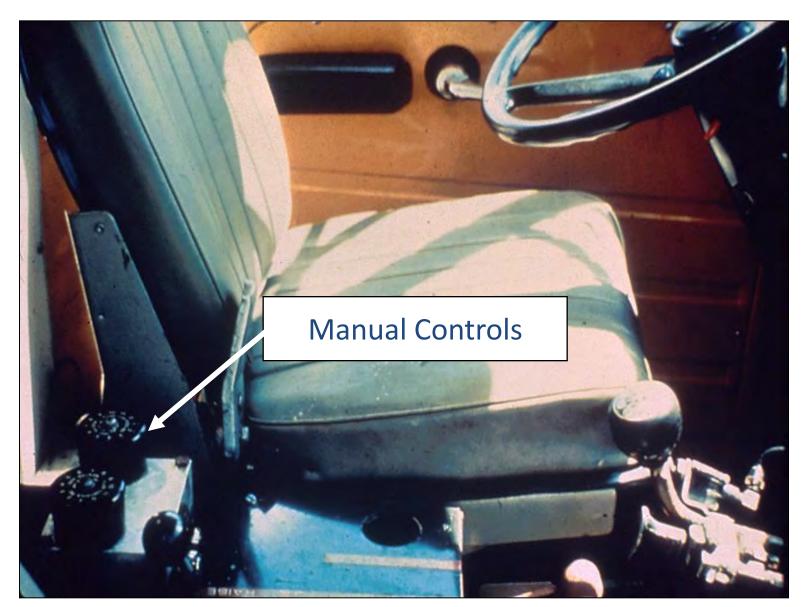
Anti-icing Equipment

Anti-Icing


Upper Leacock Township


Sensible Salting & Winter Operations

Remember!!!! Calibration is the Key to Sensible Salting!

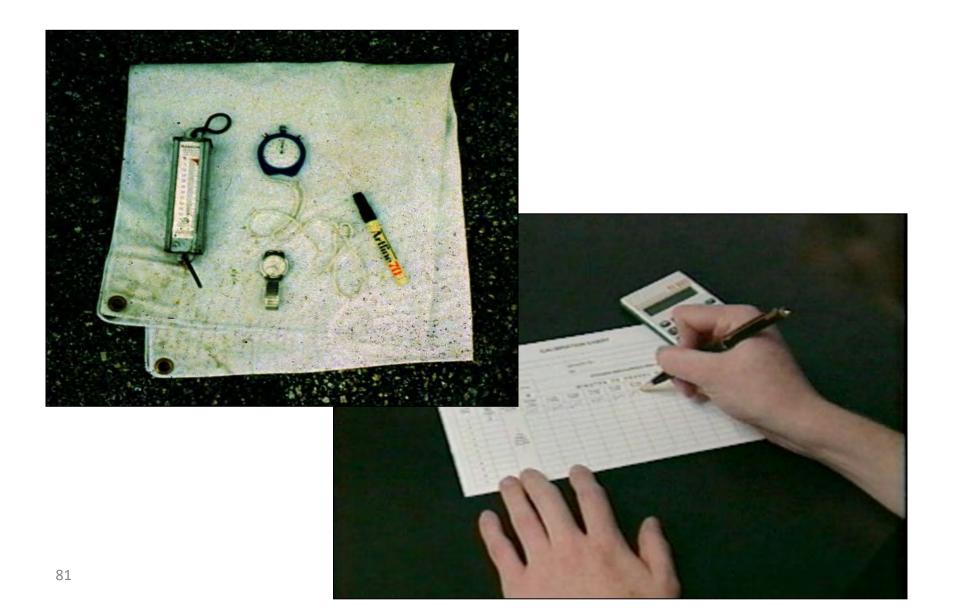

- Using the right amount to make the roads safe!
- Preventing excessive salt use
 - Saving \$\$\$\$\$
 - Protecting the environment

Calibrating the Spreader = Sensible Salting

Manual Spreader Control

Automatic Spreader Control

Computer Spreader Control


Calibrating the Spreader = Sensible Salting

Calibrating the Spreader = Sensible Salting

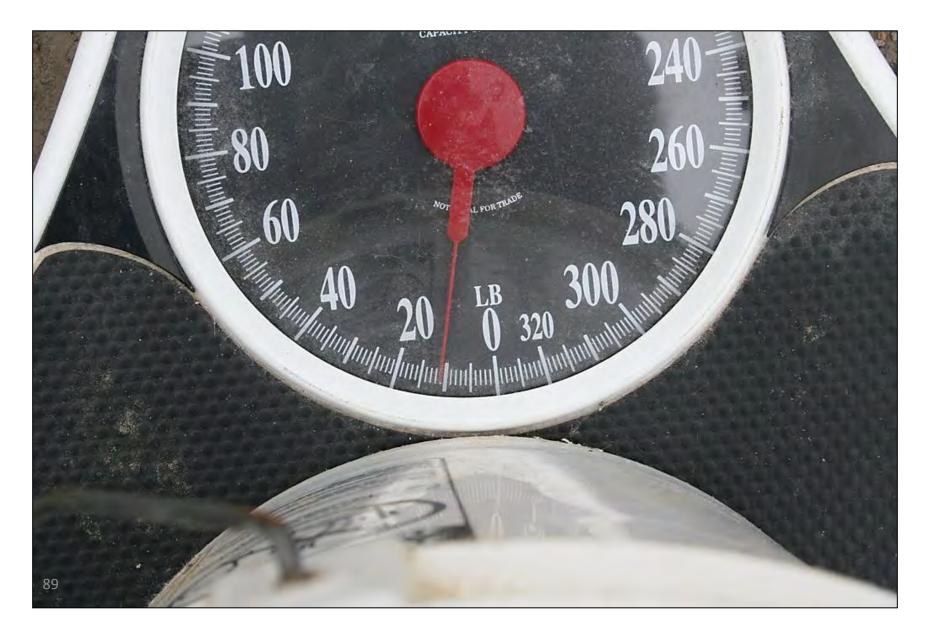
Spreader Calibration Process Walk Through

Calibrating a V-box

 Set engine RPMs at normal operation range

 Set Auger control at setting to be measured

 Use stopwatch to count auger shaft revolutions per minute (60 seconds)



CALIBRATION CHART

	ency:										
Loc	ation:										
Tru	ck No.:_					Spreader No.:					
Dat	e:	-	-	By:							
Gate.	Opening (Hopper	Type Spreader	5)	POUNDS DISCHARGED PER MILE							
A B C				MINUTES TO TRAVEL ONE MILE							
Control Setting	Shaft RPM (Loaded)	Discharge Per Revolution (Pounds)	Discharge Rate (Lbs/Min)	5 mph × 12.00	10 mph × 6.00	15 mph × 4.00	20 mph × 3.00	25 mph x 2.40	30 mph x 2.00	35 mph x 1.71	40 mg × 1.5
1			-			*				6	
2				100		1				(
Q	5	20	100	1200	600	400	300	240	200	171	150
4	This Weight			APT	. 6.		300		NS		
5			int	pla	-		+T10				
6	-4-1	Remains		H		1 AL	000		1		
7		Constant		-		C.m.	1.4				
8	20	20	400	4800	2400	1600	1200	960	800	684	600
9					0.1	4.00	X				
10	+					2				-	
11			-					100		1	

Spreader Calibration

Making Brine Work for You

• Questions / Comments

