WATER RESOURCES AND THE HYDROLOGIC EFFECTS OF COAL MINING IN WASHINGTON COUNTY, PENNSYLVANIA

U.S. GEOLOGICAL SURVEY Open-File Report 89-620

LIBRARY

Prepared in cooperation with the

PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES, BUREAU OF TOPOGRAPHIC AND GEOLOGIC SURVEY, and the WASHINGTON COUNTY PLANNING COMMISSION, and the WASHINGTON COUNTY CONSERVATION DISTRICT

VGROMI

1

.

WATER RESOURCES AND THE HYDROLOGIC EFFECTS OF COAL MINING IN WASHINGTON COUNTY, PENNSYLVANIA

Donald R. Williams, John K. Felbinger, and Paul J. Squillace

U.S. GEOLOGICAL SURVEY Open-File Report 89-620

> PROPERTY OF USGS, WRD PENNSYLVANIA DISTRICT

LIBRARY

Prepared in cooperation with the

PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES, BUREAU OF TOPOGRAPHIC AND GEOLOGIC SURVEY,

and the WASHINGTON COUNTY PLANNING COMMISSION, and the WASHINGTON COUNTY CONSERVATION DISTRICT

> Lemoyne, Pennsylvania 1993

U.S. DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 840 Market Street Lemoyne, Pennsylvania 17043-1586 Copies of this report may be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center Box 25425 Denver, Colorado 80225

ü

	Page
Abstract	1
Introduction	3
Purpose and scope	3
Previous investigations	4
Geography	5
Water use	7
Mater use	7
	10
Methods of investigation	10
Hydrogeologic framework	14
Geologic setting	14
Bedrock formations	15
Pennsylvanian system	17
Conemaugh Group	17
Glenshaw Formation	17
Casselman Formation	17
Manangahala Craun	10
	10
Pittsburgh Formation	18
Uniontown Formation	20
Pennsylvanian and Permian systems	20
Dunkard Group	20
Waynesburg Formation	20
Permian system	22
Dunkard Group	22
Washington Formation	22
Greene Formation	2.2
Uneongelidated depegita	22
	20
Quaternary system	23
Pleistocene series	23
Carmichaels Formation	23
Holocene series	24
Alluvium	24
Hydrologic setting	25
Precipitation	25
Ground-water system	29
Occurrence	29
	21
Natiability	30
	32
Short term	32
Seasonal and long term	34
Aquifer characteristics	35
Flow	38
Local	38
Regional	38
Flow model and results of simulations	38
Guidelines for developing supplies	39
Coneral procedures	40
Cite coloction restricted	40
	41
Site selection unrestricted	42

CONTENTS

CONTENTS - - Continued

	Page
	45
Low-flow frequency	43
	4/
Runoff analyses	50
water quality	52
Ground-water characteristics	52
General ground-water quality constituents	55
Water quality of bedrock formations	56
Glenshaw Formation	56
Casselman Formation	56
Pittsburgh Formation	56
Uniontown Formation	56
Waynesburg Formation	57
Washington Formation	57
Greene Formation	57
Water quality of unconsolidated deposits	57
Carmichaels Formation	57
Alluvium	57
Changes along flow path	58
Changes over time	60
Surface-water characteristics	60
Hydrologic effects of coal mining	67
Ground-water quantity	67
Known hydrologic effects	67
Water levels in mined areas	67
Míne inflows	68
Simulation of a mined basin	68
Summary of results of the mined basin simulation	69
Ground-water quality in mined areas	70
Surface water in mined areas	70
Streamflow	71
Water guality	76
Conclusions	79
References	81

-	
Appendix ADetails of hypothetical unmined-basin model	86
Flow model and results	8 6
Simulation of an unmined basin	86
Known hydrologic variables	8 6
Details of the model	8 8
Introduction	88
Boundaries of the model	92
Recharge	95
Streams (drains)	9 7
Hydraulic conductivity	9 7
Vertical anisotropy	100
Model results	100
Sensitivity analysis	108
Flow in a vertical fracture zone	111
Appendix BDetails of mined-basin model	113
Introduction	113
Mine simulation	114
Results of hypothetical mined-basin model simulation	116
Sensitivity analysis	123
Effects of a vertical fracture zone	129
Appendix CRecord of wells	131
Appendix DRecord of springs	177
Appendix EChemical analyses of ground water	182
Appendix FTrace-element analyses of ground water	186
Appendix GSurface-water quality data	190
Appendix H Aquifer test drawdown graphs	210
Glossary	220
Glossary of ground-water model terms	225
crosser, or ground water moder terms	

v

ILLUSTRATIONS

<u>Plates</u>

[In pocket]

Plates	1-4Maps	showing	(A)	northern	and	(B)	southern	Washington	County,
	Per	nnsylvani	а						

- 1.--Geologic map of northern and southern Washington, County, Pennsylvania
- 2A.--Structure map of northern Washington County, Pennsylvania
- 2B.--Structure map of southern Washington County, Pennsylvania
- 3A.--Location of wells and springs in northern Washington County, Pennsylvania
- 3B.--Location of wells and springs in southern Washington County, Pennsylvania
- 4A.--Location of hydrologic sampling sites in northern Washington County, Pennsylvania

4B.--Location of hydrologic sampling sites and Brush Run and Daniels Run basins in southern Washington County, Pennsylvania

Page

Figures

Figures	1-3Maps showing:	-
-	1Surface-water sites and drainage basins	6
	2Areas served by public water-supply companies	9
••	3Locations of areas where water levels in domestic	
	wells were measured four or five times	12
	4A generalized stratigraphic column with the dominant	
	lithologies and relative positioning of the geologic	
	units and their nomenclature	16
	5-7Graphs showing:	
	5Cumulative departure of annual precipitation from	
	37-year (1949-85) average at Burgettstown	26
	6Annual precipitation at Burgettstown, 1949-85	2 7
	7Average monthly precipitation for 37 years of	
	record (1949-85) at Burgettstown	28
	8Diagram showing geophysical logs and water-bearing	
	zones in a well tapping the Waynesburg Formation	30
	9-11Graphs showing:	
	9Relation of water levels in wells to daily	
	precipitation and topographic position for	
	December 1984 through May 1985	33
	10Average monthly precipitation and daily maximum	. .
	depth to water in well WS-155, 19/1-85	34
	11Low-flow-frequency curves for /, 14, 30 and 60	
	consecutive days for Brush Run near Buffalo	<i>, ,</i>
	(site 25) for 1968-78 and 1983-85	44
	12 Map snowing the /-day, 10-year discharges per square	
	mile for the surface-water sites	45

ILLUSTRATIONS - - Continued

Figures 13-14 Graphs showing:	rage
13Flow-duration curves for Brush Run (site 25) for the period of record 1962-78 and 1983-85 and	
the period of study 1983-85 14Flow-duration curves for Brush Run. Chartiers	. 48
Creek, and Enlow Fork for 1983-85 15Trilinear diagram of chemical composition of ground	. 49
water	. 59
measured in streams	. 62
dissolved-solids concentrations at Enlow Fork near Nest Finloy Pa (site 16)	63
18-20Maps showing:	. 05
18Maximum dissolved-sulfate concentrations measured in streams	. 65
19Subbasins and mined areas in Daniels Run basin 20Subbasins in Brush Run basin 21Graph of maximum, minimum, and mean concentrations	. 74 . 75
of selected constituents measured at the outflows of the Daniels Run and Brush Run basins	. 78
Figures in Appendix A	
AlMap of discretization of the Brush Run basin in layer 1	2.0
of the unmined-basin model	. 89
bedrock geology and computer-model simulation A3Geologic section B-B' of Brush Run basin showing	. 90
bedrock geology and computer-model simulation	. 91
basin model	. 93
A5Thickness of layer 2 in each cell of unmined-	
basin model	. 94
unmined-basin model	. 96

-AoDiagrams showing:	
A7Variation in hydraulic conductivity with topography	
and direction of flow for hillside cells	98
A8Curves used to determine horizontal hydraulic	
conductivity of cells in layers 2, 3, and 4 of	
the unmined-basin model, on the basis of depth	
from the top of layer 1 and the cell location	
(under hilltop, hillside, valley)	99
A9Map of contoured surface of computer-generated head	
and measured water-level altitude of wells in	
the Brush Run basin in layer 1	101

ILLUSTRATIONS - - Continued

	Page
Figures AlO-Al5Diagrams of:	•
AlOBudget analysis of ground-water flow in unmined-basin model	103
AllComputer-generated water table of the	
unconfined aquifer of layer 1 of the unmined-basin model	104
Al2Computer-generated potentiometric surface of the confined aquifer of layer 2 of the	
unmined-basin model	105
the confined aquifer of layer 3 of the	
unmined-basin model] Al4Computer-generated potentiometric surface of the	106
confined aquifer of layer 4 of the unmined-	107
Al5Range of ground-water flow components used in the	107
sensitivity analysis of the unmined-	110
Al6Map of locations of two vertical fracture systems	LIU
in layer 1 of the unmined basin-model 1	L12

Figures in Appendix B

Bl-B9Diagrams showing:	
BlLocation of the mine in layer 3 of the mined-	
basin model	115
B2Drawdown configuration of water levels in layer	
l of the mined-basin model	117
B3Computer-generated water table of the unconfined	
aquifer represented by layer 1 of the mined-	118
B4 Computer-generated potentiometric surface of the	110
confined aguifer represented by layer 2 of	
the mined-basin model	119
B5Computer-generated potentiometric surface of the	
confined aquifer represented by layer 3 of	
the mined-basin model	120
B6Computer-generated potentiometric surface of the	
confined aquifer represented by layer 4 of	101
the mined-basin model	IZI
model	122
B8Ground-water-flow budget of mined model used as	122
a standard for the sensitivity analysis (no	
collapsed-mine area)	125
B9Range of ground-water-flow components used in	
the sensitivity analysis of the mined-basin	
model	128

TABLES

	Page
Table 1Names and authors of the 7-1/2-minute geologic-map	
quadrangles in Washington County	4
2Water use for public-supply systems in Washington County,	-
Pennsylvania for 1984	8
3Site numbers, station numbers, station names, and drainage	1.0
areas for surface-water sites	13
4Annual precipitation at four raingages, 1983-85	28
5Summary of well depuns, reported yields, water revers,	30
6 Summary of aquifer-test data and results	37
7 Computed 7-day 10-year low flows for long-term	57
short-term, and partial-record sites	46
8Measured runoff and precipitation for five Washington	
County streamflow-gaging stations for	
water years 1983-85	51
9Federal maximum contaminant levels and recommended	
maximum contaminant levels for selected contaminants	
of drinking water for public supply systems	52
10Source and significance of constituents and properties	*
of natural waters	53
llSeepage-run discharge data collected in the subbasins	-
throughout Brush Run	72
12Seepage-run discharge data collected in the subbasins	70
throughout Daniels Run	13

Table in Appendix A

AlM	easured	water	levels	of	deep	aquifers	in	
	Washin	gton an	nd Green	ne (Counti	es		 87

CONVERSION FACTORS AND ABBREVIATIONS

Multiply	By	<u>To obtain</u>
	Length	
<pre>inch (in.) foot (ft) yard (yd) mile (mi)</pre>	25.40 0.3048 0.9144 1.609	millimeter (mm) meter (m) meter (m) kilometer (km)
	Area	
square foot (ft ²) square foot (ft ²) square mile (mi ²)	929.0 0.09294 2.590 <u>Volume</u>	square centimeter (cm²) square meter (m²) square kilometer (km²)
gallon (gal) gallon (gal)	3.785 0.003785	liter (L) cubic meter (m ³)
	<u>F10w</u>	
foot per day (ft/d) cubic foot per second (ft³/s)	0.3048 0.02832	<pre>meter per day (m/d) cubic meter per second (m³/s)</pre>
<pre>cubic foot per second per square mile [(ft³/s)/mi²]</pre>	0.01093	<pre>cubic meter per second per square kilometer [(m³/s)/km²]</pre>
gallon per minute (gal/min) gallon per day (gal/d)	0.06308 0.00 3 785	liter per second (L/s) cubic meter per day (m ³ /d)

<u>Temperature</u>

degree Fahrenheit (°F)

 $^{\circ}C = 5/9 (^{\circ}F-32)$

degree Celsius (°C)

Specific capacity

gallon per minute
 per foot [(gal/min)/ft]

0.2070

liter per second per
 meter [(L/s)/m]

х

CONVERSION FACTORS AND ABBREVIATIONS -- Continued

Other Abbreviations

microsiemens per centimeter at 25 degrees Celsius (μ S/cm) [formerly micromhos per centimeter at 25 degrees Celsius (μ mhos/cm)]

milligrams per liter (mg/L)

<u>Sea level</u>: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929."

.

WATER RESOURCES AND THE HYDROLOGIC EFFECTS OF COAL MINING IN WASHINGTON COUNTY, PENNSYLVANIA

by Donald R. Williams, John K. Felbinger, and Paul J. Squillace

ABSTRACT

Washington County occupies an area of 864 square miles in southwestern Pennsylvania and lies within the Pittsburgh Plateaus Section of the Appalachian Plateaus physiographic province. About 69 percent of the county population is served by public water-supply systems, and the Monongahela River is the source for 78 percent of the public-supply systems. The remaining 31 percent of the population depends on wells, springs, and cisterns for its domestic water supply.

The sedimentary rocks of Pennsylvanian and Permian age that underlie the county include sandstone, siltstone, limestone, shale, and coal. The mean reported yield of bedrock wells ranges from 8.8 gallons per minute in the Pittsburgh Formation to 46 gallons per minute in the Casselman Formation. Annual water-level fluctuations usually range from less than 3 ft (feet) beneath a valley to about 16 ft beneath a hilltop. Average hydraulic conductivity ranges from 0.01 to 18 ft per day. Water-level fluctuations and aquifer-test results suggest that most ground water circulates within 150 ft of land surface.

A three-dimensional computer flow-model analysis indicates 96 percent of the total ground-water recharge remains in the upper 80 to 110 ft of bedrock (shallow aquifer system). The regional flow system (more than 250 ft deep in the main valley) receives less than 0.1 percent of the total ground-water recharge from the Brush Run basin. The predominance of the shallow aquifer system is substantiated by driller's reports, which show almost all water bearing zones are less than 150 ft below land surface. The modeling of an unmined basin showed that the hydrologic factors that govern regional groundwater flow can differ widely spatially but have little effect on the shallow aquifers that supply water to most domestic wells. However, the shallow aquifers are sensitive to hydrologic factors within this shallow aquifer system (such as ground-water recharge, hydraulic conductivity of the streamaquifer interface, and hydraulic conductivity of the aquifer). A vertical fracture zone would probably increase ground-water availability within the zone and would probably result in a lower head in the shallow aquifers in an upland draw area and an increased head in a valley.

Streams in the northern and western parts of the county drain to the Ohio River and streams in the eastern and southern parts of the county drain to the Monongahela River. The computed 7-day, 10-year low-flow frequencies for the surface-water sites ranged from 0.0 to 55×10^{-3} cubic feet per second per square mile. The lowest low-flow discharges per square mile were in the south-central and southwestern parts of the county. The highest low-flow discharges per square mile were in the eastern and northern parts of the county. The annual water loss at five gaged streams ranged from 52 to 75 percent of the total precipitation. The loss resulted from evaporation, transpiration, diversion, mines, ground-water outflow from the system, and plant and animal consumption.

The major ground-water-quality problems are elevated concentrations of iron, manganese, and dissolved solids, and very hard water. Minor groundwater-quality problems include elevated concentrations of fluoride, chloride, and sulfate. Downgradient along the ground-water flow path, principal ions change from mostly calcium, magnesium, sulfate, and bicarbonate to sodium and chloride. Dissolved-solids concentrations generally increase with residence time. Elevated concentrations of sulfate and total dissolved solids were common at the surface-water sites in the northern and eastern parts of the county where most of the active and abandoned coal mines are located and where acid mine drainage is most prevalent. However, measured alkalinity at most of the surface-water sites ranged from 86 to 345 milligrams per liter, indicating that these streams would have a neutralizing effect on most inflows of acid mine drainage.

The model of the hypothetically mined Brush Run basin shows that the vertical hydraulic conductivity (either existing or induced by mine subsidence) between the shallow ground-water system and the mine, and the depth to the mine are critical controls on the amount of ground water entering the mine. When the vertical hydraulic conductivity was increased by a factor of four for a mine about 250 ft deep in the main valley, inflow to the mine increased almost by the same factor. The model also shows that increasing the depth to a mine by 200 ft (mine about 450 ft deep in main valley) would cause mine inflow to decrease one order of magnitude.

Comparisons between stream discharges during low base-flow conditions in a mined basin (Daniels Run) and an unmined basin (Brush Run) indicated that the deep mining did not substantially lower streamflow. Although streamflow decreased and, at times, completely disappeared in the middle and lower parts of Daniels Run basin, it reappeared again downstream as ground-water discharge and was part of the flow at the mouth of Daniels Run. Comparison of the water-quality characteristics of the two basins showed that concentrations of dissolved solids, sulfate, sodium, chloride, fluoride, and manganese were greater in the mined basin than in the unmined basin. The pH and iron concentrations were similar in both basins.

INTRODUCTION

Water managers and residents of Washington County are concerned about the actual and potential effects of large-scale mining on their water resources, particularly in the southwestern part of the county, which contains a significant percentage of the nation's high-grade bituminous-coal reserves. People are concerned particularly about the reduction of ground-water storage in shallow aquifers above potential underground coal mines. These aquifers are the source of waters to numerous municipal and individual water-supply systems. Overlying aquifers have been fractured and dewatered in parts of eastern Washington County because of the collapse of unsupported roofs in some of the deep coal mines. Of equal concern is the effect of underground coal mining on the water supply in municipal surface-water reservoirs, which supply water to many county residents.

The principal sources of water contamination in Washington County are domestic sewage, industrial discharges, and acid mine drainage (AMD). AMD, the chief source of water contamination, is the result of more than 100 years of surface and underground coal mining, primarily in the eastern and northern parts of the county. AMD has affected the quality of surface and ground waters, the public water-supply systems, and water-oriented recreation throughout the mined parts of the county.

If coal continues to be a significant energy resource for the rest of this century, major initiatives will be taken to recover the coal reserves remaining in southwestern Washington County. This could expand the watersupply and AMD problems to presently unmined areas of the county. In response to these concerns, this study was undertaken by the U.S. Geological Survey in cooperation with the Pennsylvania Topographic and Geologic Survey, the Washington County Planning Commission, and the Washington County Conservation District.

Purpose and Scope

This report describes the hydrogeology, water resources, and the effects of coal mining on the water resources. Ground-water data, which include water levels, well and spring yields, and water quality are used to describe the hydrologic conditions of the geologic formations underlying Washington County. Surface-water-quantity and quality data are used to describe the surface-water characteristics and the severity of AMD throughout the county. The hydrologic effects of coal mining are shown by comparing the hydrologic conditions throughout the county, and in particular, the conditions in the unmined Brush Run basin are compared with those in the mined Daniels Run basin. A threedimensional ground-water-flow model defines the ground-water-flow systems in the unmined basin and simulates conditions under several possible underground mine situations.

Previous Investigations

The coal, oil, and gas resources of southwestern Pennsylvania have provided the impetus for many geologic publications dating back to the early 19th century. A few of these studies are listed by Berryhill and others (1971, p. 3), Socolow and others (1980, p. 47-48), and Piper (1933, p. 2-4).

There are 14 published 7-1/2-minute geologic maps (table 1) and a few recent publications that describe the geology of various parts of the county. Kent and others (1969) discussed the geology and land use in the eastern part of the county. Berryhill and others (1971) further defined the stratigraphy, sedimentation, and economic and engineering geology of the coal-bearing rocks of Late Pennsylvanian and Early Permian age near the city of Washington.

Piper (1933) published the first comprehensive ground-water investigation in southwestern Pennsylvania. Piper's investigation involved the collection of well data and interpretation of the occurrence of ground-water quantity and quality with respect to the rock formations and structure. He also discussed the best methods of well construction and recovery of water. Poth (1962) summarized the occurrence and chemical quality of brine in western Pennsylvania. Newport (1973) published a summary of ground-water resources of Washington County in which he discussed the hydrologic cycle, water-bearing characteristics of the geologic units, and problems threatening the ground water. Chester Engineers (1971) conducted a water-resources study of the Tenmile Creek basin which provided information on streamflow, flood flows and frequencies, water quality, and water supply. Beall (1975) did a stream reconnaissance of nutrients and other water-quality constituents in the greater Pittsburgh region, which included Washington County. Page and Shaw (1977) examined selected sites in Washington County as part of their work on the low-flow characteristics of Pennsylvania streams. During 1979-81, the U.S. Geological Survey measured streamflow and sampled water chemistry and aquatic invertebrates at selected stream sites in the coal region that included Washington County (Herb and others, 1981; Roth and others, 1981).

Geologic quadrangle name	Authors
Amity	Berryhill (1964)
Avella and part of the Steubenville East	Schweinfurth (1976)
California	Schweinfurth (1967)
Carmichaels	Kent (1969a)
Ellsworth	Berryhill and Schweinfurth (1964)
Hackett	Kent (1967)
Mather	Kent (1969b)
Midway	Roen (1973)
Monongahela	Roen, Kent, and Schweinfurth (1968)
Prosperity	Kent (1972)
Washington East	Swanson and Berryhill (1964)
Washington West	Berryhill and Swanson (1964)
Waynesburg	Roen (1970)
West Middletown and part of Bethany	Schweinfurth (1975)

Table 1.--Names and authors of the 7-1/2-minute geologic-map quadrangles in Washington County

Geography

Washington County is near the southwestern corner of Pennsylvania and includes an area of 864 mi² (square miles) (fig. 1). The county is bordered on the north by Beaver and Allegheny Counties, on the east by Westmoreland and Fayette Counties, on the south by Greene County, and on the west by West Virginia.

Washington County is in the Pittsburgh Plateaus Section of the Appalachian Plateaus physiographic province. The present land surface was formed through the erosion by streams of a former plain. Remnants of this ancient plain slope from altitudes of about 1,500 ft above sea level in the southern part of the county to about 1,200 ft in the northern part. Stream erosion has created a complexly dissected area, having as much as 750 ft of relief between hilltops and valley bottoms. Tributary streams generally lie in V-shaped valleys, and their gradients are much steeper than those of the major streams.

Washington County is drained by several streams, all of which eventually flow into either the Ohio River on the west and north or into the Monongahela River on the east. The major streams that drain westward into the Ohio River include Kings Creek, Harmon Creek, Cross Creek, Buffalo Creek, and Enlow Fork of Wheeling Creek. Draining to the north and northeast into the Ohio River are Raccoon Creek and Chartiers Creek. Draining to the east into the Monongahela River are Peters Creek, Mingo Creek, Pigeon Creek, Maple Creek, Pike Run, and Tenmile Creek.

The 1980 population of Washington County was 217,000. Most of the large municipalities are in the extreme eastern part of the county along the Monongahela River and in the central part of the county. The populations of these municipalities have decreased within the last 10 years, while the small, rural municipalities have increased.

Agricultural land accounts for about 47 percent of the total land use. Because of the soils and slopes throughout the county, hayland and pastureland rank largest in agricultural land use. Forest land covers about 35 percent of the county's total area and a large percentage is not readily adaptable to most uses because of the steepness of the terrain. County and community parks, surface mines, state gamelands, and areas of commercial, industrial, and residential development make up the remaining land use.

The climate of Washington County is humid continental. Annual precipitation for 1949-85 averaged 36.4 in. (inches) at Donora on the eastern border of the county and 40.2 in. at Burgettstown in the northern part of the county (U.S. Department of Commerce). Summers generally are mild to warm and humid; the mean temperature is about 70 °F (degrees Fahrenheit). Winters generally are cold; the mean temperature is about 30 °F. The average annual snowfall is about 30 in. The prevailing wind is generally from the west-southwest.

Figure 1.--Surface-water sites and drainage basins. (See table 3 for names of stations.)

<u>Water</u> Use

In 1984, withdrawals for public water-supply systems in Washington County averaged about 24.2 Mgal/d (million gallons per day). About 69 percent of the total population was served by public water supplies, and the remaining 31 percent depended on wells, springs, and cisterns for their domestic supply. The large municipalities, such as Washington and Canonsburg, and the towns along the Monongahela River and other sparsely-populated areas scattered throughout the county depend largely on public water-supply systems. The main water-supply companies serving the majority of the residents of Washington County are listed in table 2. The data in table 2 are based on information from the State Water Plan of the Pennsylvania Department of Environmental Resources (1984). Rivers, streams, and reservoirs are the sources of 98.8 percent of the water for the public supply systems; wells provided 1.0 percent of the water and springs provided 0.2 percent. The Monongahela River supplies more than 78 percent of the water used by the public-supply systems. Figure 2 shows the approximate areas served by the major watersupply systems. Areas in figure 2 not serviced by public supplies depend mainly on wells, springs, and cisterns for water supply.

Acknowledgments

We gratefully acknowledge the interest and cooperation of the many individual land owners and companies throughout the county who provided access to private property for the collection of the field data for this study. A special thanks goes to the following persons, companies, organizations, and government agencies who permitted us to install hydrologic monitoring equipment on their property: Mr. Ralph Barnhart; Mrs. Margaret Brown; Mr. William Calvert; Mr. Charles Chase; Mr. Kenneth Craft; Mr. Arthur Foertsch; Mr. Mike Guza; Mr. Jason Meloy; Mr. Jack Pritts; Mr. Angelo Quarture; Mr. Edward Schultz; Mr. Reed Shaw; Mr. David Smith; Consol, Pennsylvania Coal Company; Mount Pleasant Township; Pennsylvania Department of Transportation; Pennsylvania Game Commission; and Western Pennsylvania Water Company, Washington District. We also thank the Vesta Mining Company for providing us with mine pumping rates and mine maps, which were extremely useful for the study.

The Pennsylvania Department of Environmental Resources, Division of Mine Subsidence Office in McMurray, Pa., provided us with valuable information on the extent and depth of underground mining throughout the county.

Table 2.--Water use for public-supply systems in Washington County, Pennsylvania for 1984

1

•

[--, no data available. Data from Pennsylvania Department of Environmental Resources, Annual Water Supply Report, 1984]

			Average daily consumption, in gallons per day			
	Water company ¹	Water source	Domestic	Commercial and industrial	d Other	Total
1.	Independence Municipal Authority	Donahue Dam	48,300	2,000	30,700	81,000
2.	Cedar Grove Water Association	Donahue Dam	17,600	1,200		18,800
З.	F-F Area Water Association	Ground-water wells from Weirton, W.Va.	111,000	11,000	31,000	153,000
4.	Smith Township Municipal Authority	Dinsmore Dam and one well	237,000	73,800	34,500	345,300
5.	Western Fennsylvania Water Company, McDonald and Washington District	Chartiers Creek Reservoirs 1, 3, 4; Little Chartiers Creek Reservoirs 1 and 2; Monongahela River	6,132,000	5,575,000	681,000	12,388,000
6.	Western Pennsylvania Water Company, Monongahela District	Monongahela River	1,309,000	280,500	280,500	1,870,000
7.	Charleroi Municipal Authority	Monongahela River	1,680,000	3,760,000	1,050,000	6,490,000
8.	Van Voorhis Water Company	Spring	7,240			7,240
9.	McCormick Water Company	Monongahela River	3,420		3,530	6,950
10.	Bentleyville Water Company	Monongahela River	107,800	43,900	45,300	197,000
11.	Ellsworth Water Company	Pigeon Creek	63,500	177,000	65,900	306,400
12.	Cokeburg Water Company	South Branch Pigeon Creek	39,900			39,900
13.	Marianna Water Company	Tenmile Creek	37,400	175,000	119,000	331,400
14.	West Bethlehem Township Water Company	Tenmile Creek	20,100		9,800	2 9,900
15.	Southwestern Pennsylvania Water Authority	Monongahela River, South Fork Tenmile Creek	33,600	2,700	1,200	37,500
16.	Tri-County Joint Municipal Authority	Monongahela River	280,000	114,000	15,000	409,000
17.	California Water Company	Monongahela River	309,000	37,600	51,400	398,000
18.	Washington Township Municipal Authority	Monongahela River	146,000	650,000		796,000
19.	Claysville-Donegal Joint Municipal Authority	Tributary of Buffalo Creek	50,000	13,000	20,000	83,000
20.	West Alexander Borough Municipal Authority	Ohio River	27,400	700	1,400	29,500
21.	Redstone Water Company	Spring	34,700			34,700
22.	Somerset Water Company	Pigeon Creek	5,500		3,000	8,500
23.	Bethenergy Mines, Inc.	Central Branch Pigeon Creek	1,600	176,000	2,300	179,900
	TOTALS		10,702,060	11,093,400	2,445,530	24,240,990

¹Locations shown on figure 2.

SHADED AREAS SERVED BY PUBLIC WATER SUPPLIES

20

WATER-SUPPLY COMPANY SERVICING SHADED AREA (listed in table 2)

MORRIS NAMES WITHIN DASHED AREAS ARE TOWNSHIPS

Figure 2.--Areas served by public water-supply companies.

METHODS OF INVESTIGATION

A description of the geology of Washington County was compiled from several geologic maps onto a single county map (plate 1). The geology was used to establish the framework for ground-water occurrence, movement, and quality. More than 500 domestic wells and 50 springs were inventoried to define the availability of ground water with respect to geologic formation and topographic position. To help quantify ground-water occurrence and flow, aquifer tests and slug tests were made and geophysical logs were run on nine wells. Water-level recorders were installed on these nine observation wells to determine characteristics of ground-water recharge and premining waterlevel fluctuations. Water-level data were collected at 12 additional observation wells in Greene County that were drilled for the Greene County Water Resources Study (Stoner and others, 1987). Similarities in the geology and mining conditions in Greene County make such data comparable with Washington County water-level data. Water levels in about 150 of the inventoried domestic wells in 14 populated areas in the unmined section of the county (fig. 3) were measured 4 to 5 times between 1983 and 1985. This information was used as a generalized, premining water-level data base.

Water samples from the nine observation wells were collected for waterquality analyses after pumping the wells until the specific conductance had stabilized. Water samples were collected from house taps of 90 domestic well systems that did not have filters or water conditioners.

Thirty-five sites for measuring surface-water quantity and quality were established throughout the county (fig. 1 and table 3). Sites 11, 16, 20, 21, 22, and 25 were streamflow-gaging stations where continuous streamflow data were recorded. Instantaneous streamflow data were recorded at the other 29 sites. Sites 15 and 16 were part of the surface-water network of the Greene County Water Resources Study from September 1979 through September 1982 (Stoner and others, 1987). Sites 1, 2, 3, 6, 8, 10, 13, 27, 28, 32, 33, and 34 were part of the U.S. Geological Survey Coal Hydrology Network that was sampled from 1979-81. Streamflow data were collected at site 25 from 1960-78 as part of the U.S. Geological Survey's streamflow-gaging network.

Water samples were collected four times from 1983-85 at all surface-water sites during low and high base flows. Samples were collected more frequently at the six streamflow-gaging stations. Water-quality data collected from previous studies are also reported. Water-quality field measurements of ground water and surface water included acidity, alkalinity, specific conductance, pH, and temperature. Laboratory analyses included dissolved calcium, magnesium, sodium, potassium, sulfate, chloride, fluoride, silica, boron, total and dissolved iron, total and dissolved manganese, and total dissolved solids. Total sulfide was determined for ground-water samples only. Trace elements analyzed for the nine observation wells included dissolved aluminum, arsenic, cadmium, chromium, cobalt, copper, lead, mercury, nickel, selenium, strontium, and zinc. The samples were analyzed at the U.S. Geological Survey laboratory in Doraville, Georgia. The effects of coal mining on the water resources were determined by comparing the hydrologic conditions in a mined basin (Daniels Run) and an unmined basin (Brush Run). Two recording rain gages were installed in each basin. Surface-water discharge from each basin was recorded at a streamgaging station. Ground-water discharge in each basin was measured by five seepage runs made during base-flow periods in the spring and fall during 1983-85. Continuous water-level data were recorded at one observation well in the Daniels Run basin and at two observation wells in the Brush Run basin. Additional water-level data were collected at 20 domestic wells in the Daniels Run basin and at 25 domestic wells in the Brush Run basin.

A three-dimensional ground-water model was constructed to improve the understanding of ground-water-flow concepts in the Brush Run basin. The steady-state calibration of the model was based on hydrologic data collected in the basin, from data transferred from areas outside the basin in Washington County, and from the results derived from the Greene County Water Resources Study (Stoner and others, 1987). Finally, simulations of several underground mine scenarios were conducted to determine potential effects mining would have on the hydrologic system.

EXPLANATION

DEEP-MINED AREAS

UNION NAMES WITHIN DASHED AREAS

ARE TOWNSHIPS

POPULATION CENTERS
 l. Hickory

8. Taylorstown Exit

- 2. Woodrow
- 3. Rea
- 9. Lagonda 10. South Franklin Manor
- 4. West Middletown

11. Posperity

- 5. Independence
- 6. Taylorstown
- 12. Lone Pine
- n 13. Amity
- 7. McGuffy Educational 14. West Finley Complex

Figure 3.--Locations of areas where water levels in domestic wells were measured four to five times.

Table 3.--Site numbers, station numbers, station names, and drainage areas for surface-water sites

Site number	Station number	Station name	Drainage area in square miles
1	03085237	Chartiers Creek at Houston, Pa.	54.5
2	03085240	Chartiers Run at Houston, Pa.	22.3
3	03085300	Little Chartiers Creek at Linden, Pa.	37.0
4	03085310	Res #2 Little Chartiers Creek near McMurray, Pa.	.75
5	03075081	Peters Creek at Gastonville, Pa.	13.6
6	03075058	Mingo Creek at River View, Pa.	22.2
7	03075037	Pigeon Creek at Hazel Kirk, Pa.	52.6
8	03075035	North Branch Pigeon Creek at Bentleyville, Pa.	11.1
9	03074800	Pike Run at Daisytown, Pa.	20.9
10	03072820	Daniels Run at West Zollarsville, Pa.	12.2
11	03072818	Daniels Run near West Zollarsville, Pa.	8.47
12	. 03072817	Little Tenmile Creek near Tenmile, Pa.	27.2
13	03072815	Tenmile Creek near Amity, Pa.	51.6
14	03072813	Tenmile Creek at Prosperity, Pa.	13.5
15	03111580	Templeton Fork near West Finley, Pa.	20.8
16	03111585	Enlow Fork near West Finley, Pa.	38.1
-17	03111603	Robinson Fork at West Finley, Pa.	14.8
18	03111900	Middle Wheeling Creek near West Alexander, Pa.	10.4
19	03111220	Dutch Fork Creek near Claysville, Pa.	13.8
20	03085217	Chartiers Creek at Lagonda, Pa.	3.97
21	03085220	Unnamed Tributary 2B to Chartiers Creek at Lagonda, Pa.	.38
22	03085221	Unnamed Tributary 1 to Chartiers Creek at Lagonda, Pa.	.90
23	03085224	Res #3, Chartiers Creek near Washington, Pa.	.98
24	03111140	Buffalo Creek at Taylorstown, Pa.	30.9
25	03111150	Brush Run near Buffalo, Pa.	10.3
26	03111250	Sugarcamp Run at Frogtown, Pa.	9.17
27	03111005	North Fork Cross Creek at Avella, Pa.	16.3
28	03111001	Cross Creek near Hickory, Pa.	4.17
29	03107690	Raccoon Creek near Hickory, Pa.	3.73
30	03085400	Millers Run at Cecil, Pa.	13.9
31	03085450	Robinson Run at McDonald, Pa.	7.84
32	03107600	Raccoon Creek at Raccoon, Pa.	18.9
33	03110920	Harmon Creek near Hanlin Station, Pa.	19.9
34	03110812	Kings Creek near Florence, Pa.	7.10
35	03110820	Aunt Clara Fork near Paris, Pa.	14.2
136	03073000	South Fork Tenmile Creek at Jefferson, Pa.	180
2 ₃₇	03112000	Wheeling Creek at Elm Grove, W. Va.	282

1 Site 36 is in Greene County, Pennsylvania

²Site 37 is in Ohio County, West Virginia

HYDROGEOLOGIC FRAMEWORK

<u>Geologic Setting</u>

The geology of Washington County includes sedimentary rocks of Pennsylvanian and Permian age (plate 1) and alluvial deposits of Quaternary age that occupy the valley bottoms. The oldest exposed bedrock unit, the Glenshaw Formation, crops out in the valley bottoms in the extreme northwest corner of the county. The youngest bedrock unit, the Greene Formation, underlies most of southwest and south central Washington County. A geologic cross section of the county is shown on plate 1. Washington County stradles two structural motifs. The structure in the area is a transition between almost parallel anticlines and synclines, the axis of which trend northeastward, and an area on the outer limits of Allegheny deformation in which only the incipient stages of deformation are apparent. This outer area is characterized by short, randomly oriented axial-plane traces and domes.

The altitude of the base of the Pittsburgh coal bed, at the base of the Pittsburgh Formation, was contoured from records of oil, gas, and coal exploratory drilling; these contours show the orientation of the folding (plate 2a,b). The dips of folded limbs range from less than 20 to 180 ft/mi (feet per mile) in the central and eastern parts of the county. The base of the Pittsburgh coal bed is lowest along the axis of the Nineveh Syncline near the Greene and Washington County boundary and is highest at the Aunt Clara Dome in the northwest corner of the county (plate 2a). The Pittsburgh coal bed is easily identifiable in test borings and generally is continuous across the county except in the northernmost part where it has eroded away.

Structural features in the northern and southern parts of the county are noticeably different. Southern Washington County is characterized by a regular series of northeast trending anticlines and synclines. However, this symmetry is broken in the northern part of the county where many of these features terminate or abruptly change direction. For example, the Claysville and Washington Anticlines and the Finney Syncline are truncated near the Westland Dome. The northwestern part of the county has four domes (structural highs) and fewer folded structures. The domes and the fold interference patterns in the area may be the result of forces that created the west-to-east trending Cross Creek Syncline.

Fractures are breaks that occur in rocks when stress induces mechanical failure within a rock unit. Because movement of water through bedrock occurs primarily through fractures, it is important to understand fracture distribution and character. There are two basic types of fractures; joints are near-planar surfaces along which there has been little or no movement, while faults are breaks across rock units that have had noticeable differential movement. Jointing is a characteristic common to bedrock in all areas; faults are less common. Fracture orientation is usually controlled by bedding, being either parallel or perpendicular to the layers forming a bedrock unit.

Kohl (1980) measured the density and orientation of joints in outcrops in parts of Washington County and several other adjacent counties and reported that sandstones have the largest joint spacing; the average joint spacing for sandstone is about 8 ft. The average joint spacing of shale and limestone is about 5.5 and 2.5 ft, respectively. Coal beds have the smallest joint spacing of rock types exposed in the area; their average spacing is less than 0.2 ft. Joints commonly occur in sets, which have a definite trend or orientation. The most common and best developed joint sets in bedrock in Washington County trend N. 25 °E. and N. 65 °W. from rose diagrams by Kohl (1980).

Local stress relief of natural rock pressure in valleys causes another fracture pattern. Wyrick and Borchers (1981) concluded that stress-relief fractures in the Appalachian Plateau exhibit a horizontal orientation beneath valley floors and are vertical along valley walls.

A 1.5-mi-long fault is located south of West Middletown and east of the axis of the West Middletown Syncline (plate 2a). This fault is a possible extention of a larger fault that extends from western Fayette County across the Monongahela River into eastern Greene County.

Additional geologic information may be obtained from Berryhill, Schweinfurth, and Kent (1971), Piper (1933), and Geologic Quadrangle Maps of Washington County (authors listed in table 2).

Bedrock Formations

The stratigraphy and water-bearing properties of geologic formations are discussed in this section. The stratigraphy includes a description of the color, texture, thickness, and lithology of the formations.

The bedrock geologic map, generalized geologic column, and geologic cross section shown on plate 1 complement the discussion of this section. The thickness, relative position, and generalized lithology of the formations are shown on the geologic column. The cross section, in plate 1, shows the changes in extent and thickness of the formations along the trace of the section. A brief summary of the lithology and hydrologic characteristics of the rocks is also included on plate 1. Figure 4 presents a generalized stratigraphic column that emphasizes the dominant lithologies and the relative positioning of the geologic units and their nomenclature.

Pennsylvanian System

The Upper Pennsylvanian bedrock consists of the Conemaugh and Monongahela Groups. The combined exposed thickness is 570 to 820 ft.

Conemaugh Group

The Glenshaw and Casselman Formations comprise the Conemaugh Group in Washington County. The maximum exposed thickness of the group is 400 ft.

<u>Glenshaw Formation</u>.--About 150 ft of the uppermost section of the Glenshaw Formation are exposed along stream valleys in the northwestern corner of the county. The formation consists of sandstone, siltstone, shale, limestone, and coal. Sandstone is bedded to massive, fine to coarse grained. Shales commonly are variegated red and green and are argillaceous. The Ames Limestone Member, which is the uppermost unit of the Glenshaw Formation, consists of limestone and calcareous shale. The Ames Limestone Member is light greenish-gray in color, is thin to medium bedded, and is typically 3 ft thick. It contains an abundance of marine fossils including brachiopods and crinoid stem fragments. The Harlem coal bed is found anywhere from an inch to 20 ft below the Ames Limestone Member and is as much as 24 in. thick.

Few hydrologic data are available for the Glenshaw Formation because of its small areal extent. Reported well yields from 4 wells ranged from 1 to 110 gal/min (gallons per minute). A specific capacity of 0.52 (gal/min)/ft (gallons per minute per foot) was reported for one well.

Casselman Formation.--The Casselman Formation ranges in thickness from 220 to 335 ft. The formation crops out in the northwest corner of the county, along reaches of Chartiers and Peters Creeks, near the mouths of stream valleys in eastern Washington County and along the Monongahela River. The formation consists chiefly of sandstone and mudstone containing some limestone, siltstone, and thin coal beds. The sandstone is light to dark gray, micaceous, feldspathic, fine to coarse grained, thin and evenbedded to massive and crossbedded. A prominent sandstone unit is the Morgantown Sandstone Member described by Piper (1933). The siltstone in this formation is greenish gray and thin bedded to nonbedded. The mudstone is dark gray, gray green, and maroon, and contains siderite nodules and calcareous concretions. The limestone is light to dark gray, argillaceous, in beds 3 in. to 3 ft thick, and may contain fossils including fresh water ostracodes, Spirorbis, fish remains, and small pelecypods and gastropods. The Skelley marine zone, near the base of the formation, is the youngest marine unit in the county. All younger units were deposited in fresh water or under subaerial conditions on a deltaic plain.

Four coal beds of minor importance in the Casselman Formation are, in ascending order, the Duquesne, Elk Lick, Little Clarksburg, and Little Pittsburgh coal beds. These coals are typically of such inconsistent thickness, areal extent, and quality that they generally have not been mined. Well-yield data from 15 wells indicate that the Casselman Formation had the highest mean well yield of all the bedrock units. The mean well yield was 46 gal/min and yields were as much as 160 gal/min. Specific capacities of two wells were 9.7 and 22 (gal/min)/ft. Three spring discharges ranged from 0.07 to 2.86 gal/min.

Monongahela Group

The Monongahela Group consists of the Pittsburgh and Uniontown Formations and ranges in thickness from 250 to 385 ft. The Monongahela Group overlies the Conemaugh Group and is exposed in the northern and eastern parts of the county.

<u>Pittsburgh Formation</u>.--The Pittsburgh Formation is divided into five members which in ascending order are: lower, Redstone, Fishpot, Sewickley, and upper. The Pittsburgh Formation ranges in thickness from 205 to 290 ft and consists chiefly of limestone, sandstone, siltstone, mudstone, and coal.

The lower member of the Pittsburgh Formation consisting of sandstone, siltstone, limestone, mudstone, carbonaceous shale, and coal has been reported to range in thickness from 40 to 100 ft. The basal unit of the lower member is the Pittsburgh coal bed, which is the most prominent coal bed in southwestern Pennsylvania. The Pittsburgh coal bed consists of two or more benches with clay or shale partings. The lower bench or main bench, which is the most persistent and thickest of the Pittsburgh benches, ranges in thickness from 31 to 124 in. and has an average thickness of 66 in. A sandstone unit, which overlies the Pittsburgh coal bed in places, generally represents an ancient river channel deposit truncated with widespread festoon crossbedding. Locally, the Pittsburgh coal bed is cut out by these sandfilled channels. Mudstone and limestone overlie the Pittsburgh coal bed in areas where sandstone is absent.

The Pittsburgh Rider coal bed of Hickok and Moyer (1940) is as much as 34 in. thick and is between 20 to 40 ft above the base of the Pittsburgh coal bed. The sandstone unit above the Pittsburgh Rider coal bed occurs both as sheet-like and channel-fill deposits and is related to the sandstone overlying the Pittsburgh coal bed. The sandstone is micaceous, light gray, and fine to medium grained. The mudstone in the lower member is dark gray and contains thin beds of siltstone and sandstone. The limestone is light to dark gray in color. The carbonaceous shale is black, micaceous, and grades laterally into mudstone.

The Redstone Member consists chiefly of limestone, with some mudstone, carbonaceous shale, siltstone, sandstone, and coal, and ranges in thickness from 20 to 70 ft. The basal unit, the Redstone coal bed, is composed mostly of carbonaceous shale and thin coal stringers. The coal bed, which may be as much as 60 in. thick, commonly is less than 12 in. thick. The Redstone coal bed is present only in the northeast corner of the county and has a very definite boundary (Skema, 1987). The "Redstone Member is separable from underlying member only where Redstone coal bed (or horizon) is present"

(Schweinfurth, 1967). Because the Redstone coal horizon is missing in parts of the county, the Pittsburgh Rider coal has been sometimes misidentified as the Redstone coal bed. As a result, the lower member has been erroneously reported to be as thin as 40 ft (V.W. Skema, Pennsylvania Topographic and Geologic Survey, written commun., 1988). The mudstone is dark gray and may be calcareous. Siltstone may contain siderite and limestone nodules. The limestone is olive-gray, microcrystalline, and argillaceous.

The Fishpot Member is the thinnest member of the Pittsburgh Formation. The member is as much as 40 ft thick and contains siltstone, sandstone, mudstone, carbonaceous shale, and coal. The basal unit, where present, is a carbonaceous shale equivalent to the Fishpot coal bed of Greene County and is as much as 36 in. thick. The siltstone is usually light to dark gray and occasionally black. It is characteristically very thinly bedded and locally has abundant macerated plant debris on bedding planes (Schweinfurth, 1967). The sandstone in this unit is light gray, very fine to medium grained, micaceous, and thin to thick bedded. The mudstone in this unit is light to dark gray, laminated, and may contain siderite nodules.

The Sewickley Member ranges in thickness from 40 to 65 ft and consists chiefly of limestone, with minor amounts of sandstone, claystone, carbonaceous shale, and coal. The limestone sequence that comprises most of the Sewickley Member is called the Benwood Limestone Bed by Campbell (1903). The limestone is light to dark gray, microcrystalline to finely crystalline, and very argillaceous. That part of the limestone that is a sedimentary breccia weathers to a characteristic hackly cleavage. Limestone beds are as much as 3 ft thick and are interbedded with thin claystone beds. Fossils in the limestone include fresh water ostracodes, Spirorbis, fish remains, small gastropods, and fresh water pelecypods. The claystone interbeds are greenish gray, partly calcareous, and bedded to nonbedded. Locally, the middle of the member contains a calcareous claystone and mudstone facies of the limestone that attains a maximum thickness of 20 ft. The basal part of the Sewickley Member generally is composed of several feet of calcareous claystone and carbonaceous shale. The Sewickley coal bed is either absent or thin with many impurities throughout Washington County. The maximum thickness of the coal is approximately 2 ft.

The upper member of the Pittsburgh Formation consists chiefly of limestone, siltstone, sandstone, and mudstone, and ranges in thickness from 50 to 90 ft. The upper member generally is divided into four more less persistent units of argillaceous limestone. These units are light to dark gray, microcrystalline to finely crystalline, and range in thickness from 2 to 15 ft. Individual limestone beds in these units are several in. to 3 ft thick and separated by thin greenish-gray claystone interbeds. A few beds are laminated, suggesting algal structure. Fossils include fresh water ostracodes, *Spirorbis*, fish remains, and small pelecypods and gastropods. Beds of greenish-gray shales, siltstone, and mudstone, 1 to 15 ft thick, commonly separate the limestone units. A dark greenish-gray, fine-grained, micaceous sandstone, which locally is massive and crossbedded, sometimes separates or replaces the limestone sequences.

The Pittsburgh Formation has the lowest mean well yield of all the bedrock formations. The mean reported yield from 49 wells is 8.8 gal/min and yields range from 0.33 to 50 gal/min. The specific capacity of one well was 0.04 (gal/min)/ft. Yields from nine springs ranged from 0.25 to 40 gal/min.

<u>Uniontown Formation</u>.--The Uniontown Formation consists of a lower and upper member and ranges in thickness from 45 to 95 ft. The formation consists chiefly of sandstone, siltstone, mudstone, limestone, and coal.

Sandstone, siltstone, limestone, mudstone, carbonaceous shale, and coal form the lower member, which ranges in thickness from 15 to 75 ft. The basal unit is the Uniontown coal bed where present. The coal bed commonly is less than 12 in. thick. The Uniontown coal bed is impure and may be represented by black carbonaceous shale. A light-gray, fine-grained sandstone unit sometimes overlies the Uniontown coal bed. The upper part of the member generally consists of very finely crystalline, olive-gray to medium-dark gray argillaceous limestone containing small chert nodules locally.

The upper member ranges in thickness from 5 to 40 ft and consists chiefly of sandstone, siltstone, limestone, mudstone, and coal. The basal unit is the Little Waynesburg coal bed, a thin impure coal bed that commonly is represented by a grayish-black carbonaceous shale. The sandstone is light to medium gray and very fine grained; it grades laterally into siltstone and mudstone.

The mean reported well yield from 26 wells in the Uniontown Formation is 15 gal/min but reported well yields are as much as 75 gal/min. Specific capacities of two wells were reported as 0.08 and 0.24 (gal/min)/ft. Yields of four springs ranged from 0.58 to 5.0 gal/min.

Pennsylvanian and Permian Systems

Dunkard Group

The Dunkard Group includes the Waynesburg Formation of Late Pennsylvanian and Early Permian age and the Washington and Greene Formations of Early Permian age. In Washington County, the Dunkard Group has a maximum thickness of appproximately 900 ft. These rocks subtly change upward from more persistent coal-bearing rocks that resemble the strata of the Monongahela Group to the finer grained highly lenticular strata of the Greene Formation, which contains only thin lenses of impure coal (Berryhill, Schweinfurth, and Kent, 1971).

<u>Waynesburg Formation</u>.--The Waynesburg Formation is divided into three members: lower, middle, and upper. The thickness of the formation ranges from 80 to 180 ft.

The lower member of the Waynesburg Formation consists chiefly of sandstone, limestone, siltstone, mudstone, and coal, and ranges in thickness from 40 to 90 ft. The Waynesburg coal bed, present in most of the county, is

the basal unit of the lower member and is as much as 100 in. thick. Throughout most of the eastern half of the county, the coal bed is of minable thickness and commonly has two benches with a distinctive clay parting, which is generally 12 in. thick. In the western half of the county, the coal generally is thinner, less persistent, and confined to one bench. A lightgray, fine- to coarse-grained, sometimes massive sandstone unit above the Waynesburg coal bed is the Waynesburg Sandstone (member). The sandstone is sheetlike, has tabular (foreset) and festoon crossbedding, and locally grades laterally and vertically to siltstone and shale. The sandstone is developed best in the eastern half of the county and may be as much as 65 ft thick. The limestone in the lower member is medium gray, fine grained, argillaceous, and as much as 8 ft thick. Two limestone units commonly are found in the lower member; one is at the top of the member, and the other is in the middle. The mudstone is light to dark gray, and micaceous and locally is calcareous.

The middle member consists mostly of mudstone, with some interbedded limestone, sandstone, siltstone, carbonaceous shale, and coal, and is as much as 90 ft thick. Two poorly developed coal horizons are present. These are found at the base and near the top of the member. The Waynesburg 'A' coal bed is the basal unit of the middle member. The coal bed, when not represented by calcareous shale, typically is less than 24 in. thick and may have numerous clay partings. The coal bed is impure and may be represented by carbonaceous The mudstone is light to dark gray and locally calcareous. shale. The sandstone is light gray, very fine to fine grained, micaceous, crossbedded, and generally grades laterally and vertically to siltstone and mudstone. The siltstone is light to medium gray, micaceous, and locally is ripple bedded. The limestone is olive to dark gray, microcrystalline to finely crystalline, argillaceous, and thin to thick bedded. A thin, nonpersistent coal bed near the top of the member tentatively identified as the Waynesburg 'B' coal bed has been reported in many parts of the county. The coal bed is impure and less than 12 in. thick and may be represented by carbonaceous shale. It appears to always be overlain by clastic rocks and probably is a lower split of the overlying Little Washington and Washington coal complex (V.W. Skema, Pennsylvania Topographic and Geologic Survey, written commun., 1988).

The upper member of the Waynesburg Formation is separated from the middle member by the Little Washington coal bed. The upper member is as much as 25 ft thick and consists of sandstone, siltstone, mudstone, and carbonaceous shale. The basal Little Washington coal bed, where present, is typically thin and may be represented by grayish-black, carbonaceous shale.

The mean reported yield of wells tapping the Waynesburg Formation is 10 gal/min. The reported yields of 30 wells range from 0.5 to 60 gal/min. The specific capacities ranged from 0.18 to 2.8 (gal/min)/ft. Yields from 16 springs ranged from 1.0 to 18.4 gal/min.

Permian System

Dunkard Group

<u>Washington Formation</u>.--Cyclic sequences of sandstone, shale, limestone, and coal comprise the Washington Formation. The base is at the bottom of the Washington coal bed and the Formation thickness ranges from 140 to 235 ft. The Formation is subdivided into a lower limestone member, a middle member, and an upper limestone member. The distinguishing feature of this Formation is the abundance of limestone, especially in the western part of the county where it is the predominant lithology.

The lower limestone member consists of limestone, claystone, siltstone, sandstone, carbonaceous shale, and coal, and ranges in thickness from 15 to 40 ft. The Washington coal bed, the basal unit, is as much as 144 in. thick but is generally 24 to 48 in. thick. The coal bed is impure and often split into a sequence of thin coals. Locally, it is absent and is represented by carbonaceous shales. The limestone is light to dark gray and argillaceous and commonly is found in beds as much as 3 ft thick separated by clay, claystone, or carbonaceous shale beds. Fossils include fresh water ostracodes, *Spirorbis*, fish remains, and small gastropods. Tongues of sandstone and siltstone locally may represent the entire member.

The middle member may be as much as 155 ft thick and consists chiefly of limestone, sandstone, siltstone, mudstone, and coal. The limestone is light to dark gray and argillaceous; it has bedding thickness from a few inches to as much as 3 ft. Sandstone in this member is light gray, fine to medium grained, micaceous, and locally is crossbedded. Mudstone in this member is dark gray, poorly bedded, and locally contains small siderite nodules. The middle member has several impure, thin coal beds, the most persistent coal bed being the Jollytown coal bed of Stevenson (1876). The Jollytown coal bed is an impure coal, usually less than 12 in. thick and may be represented as carbonaceous shale. The coal bed lies about 25 ft below the top of the middle member.

The upper limestone member commonly has two beds of limestone separated by beds of sandstone, siltstone, or mudstone. The limestone is light to dark gray, fine grained, and contains fossils. The upper limestone member has a relatively high calcium carbonate content and may be as much as 50 ft thick.

The mean reported yield of 39 wells is 9.6 gal/min; the yields range from 0.5 to 50 gal/min. Specific capacities for six wells ranged from 0.03 to 3.3 (gal/min)/ft. Measured discharges from six springs ranged from 0.18 to 7.0 gal/min.

<u>Greene Formation</u>.--The Greene Formation overlies most of the southwestern part of the county except for valley bottoms where the Washington Formation crops out. The Greene Formation has a maximum thickness of more than 500 ft and consists chiefly of sandstone, siltstone, mudstone, and thin units of limestone, clay, carbonaceous shale, and coal. The rock types generally repeat vertically into a crude cyclic sequence. The cyclic sequence in
ascending order is coal, carbonaceous shale, sandstone, siltstone, mudstone, limestone, and clay. Coal beds are thin, impure, and lenticular. Carbonaceous shale contains abundant coalified plant stems and logs, fish remains, and fresh water ostracodes. The sandstone is light gray, micaceous, friable, and fine to medium grained. Bedding is thin to massive and locally crossbedded. The siltstone is micaceous and generally planar with local small scale cross-laminations and current ripples. The siltstone locally contains ironstone and limestone nodules and may occur both above and below sandstone Siltstone is the most abundant rock in the Greene Formation. units. The mudstone in this formation is medium to dark gray and poorly bedded; it commonly underlies limestone units and overlies carbonaceous units. The limestone in this formation is light to dark gray, argillaceous, fine grained, and thin bedded. Fossils include fresh water ostracodes, fish remains, and small pelecypods and gastropods. The clay in this formation is light to medium gray and generally shaly; it may be as much as 1 ft thick beneath carbonaceous units and between limestone beds. The Tenmile coal bed of Clapp (1907) is a thin, impure coal, usually found 20 to 25 ft above the base of the The Sparta coal bed of Griswald and Munn (1907) and the Nineveh formation. coal bed are thin, impure, and lenticular and are about 80 and 310 ft above the base of the formation, respectively. The Prosperity Limestone Member of Griswald and Munn (1907) is a persistent unit, found about 100 to 115 ft above the base of the formation, and generally is a sequence of argillaceous limestone beds and mudstone as much as 9 ft thick.

The mean reported yield of 13 wells tapping the Greene Formation is 11 gal/min and the yields ranged from 2 to 35 gal/min. Yields from nine springs ranged from 0.2 to 39.9 gal/min.

Unconsolidated Deposits

Quaternary System

The Quaternary System contains both Pleistocene and Holocene deposits. These deposits rest unconformably above the previously described bedrock units. Pleistocene deposits are typically 0 to 90 ft thick. Holocene alluvium deposits are about 10 to 15 ft thick.

Pleistocene Series

<u>Carmichaels Formation</u>.--The Carmichaels Formation generally is unconsolidated and poorly sorted alluvium, which consists of mixed clay, silt, and sand containing rounded pebbles, cobbles, and boulders. Boulders may be as much as 4 ft in diameter and generally are concentrated at the base of the unit. Pure clay and sand lenses are scattered throughout the unit and locally small limonite nodules are abundant. The Carmichaels Formation generally is found in the eastern part of the county along the lower parts of the tributaries to the Monongahela River and along the Monongahela River. In this area, the base of the deposit is about 170 ft above the present Monongahela River level or at an altitude of about 910 ft. The deposits also are found along reaches of Raccoon and Chartiers Creek in northern Washington County. The Carmichaels Formation may be as much as 150 ft thick (Schweinfurth, 1967). Because of limited areal extent and the small number of wells completed in the Carmichaels Formation, well yield, specific capacity, and water quality data were not available. Low well yields, probably less than 5 gal/min, would be expected from this formation because of the heterogeneous composition.

Holocene Series

The Holocene Series consists of alluvial deposits and are typically 10 to 15 ft thick.

<u>Alluvium</u>.--The alluvium consists of clay, silt, sand, gravel, and cobbles in and adjacent to streams. The material is derived mostly from local bedrock and may be as much as 63 ft thick (Newport, 1973).

The reported well yields for the alluvial aquifer are the highest of all the aquifers. The mean reported well yield from four wells is 194 gal/min and the yields ranged from 100 to 350 gal/min. The high yield wells are adjacent to the Monongahela River. The specific capacities of two wells were 1.6 and 5.1 (gal/min)/ft.

HYDROLOGIC SETTING

Water enters Washington County as precipitation. A small percentage of the water is held as soil moisture and stored in ponds and reservoirs, and the rest leaves as water vapor to the atmosphere, or as streamflow, which includes ground-water discharge. The ground water discharges to perennial streams within the county and adjacent counties. The hydrologic system is thus composed of dynamically related parts, and the quantities of water that are present in and move through each part of the hydrologic system place natural limits on the development and management of the water resources. Neither the ground-water nor surface-water part of the system can be developed without affecting the other.

Precipitation

The average annual precipitation for 37 years of record (1949-85) at Burgettstown (fig. 1) in northern Washington County was 40.18 in. (U.S. Department of Commerce). The cumulative departure of annual precipitation from the average at this site illustrates recent variations in the availability of water in the study area (fig. 5). The graph shows a steady decline in the cumulative precipitation from 1962-71. Figure 6 is a bar graph of annual precipitation at Burgettstown that also shows precipitation was considerably below normal during that period (1962-71), indicating a period of drought. Deficiencies for that period ranged from 1.5 to 36.0 percent of the 37-year average annual precipitation. In the 3-year study period, precipitation at this site was above average in 1983 and below average in 1984 and 1985 (fig. 6). Precipitation differed considerably between the U.S. Weather Service rain gage at Burgettstown in northern Washington County and the project rain gages in the Brush Run, Daniels Run, and Enlow Fork basins (fig. 1), located in the west-central, the southeastern, and the southwestern parts of the county, respectively. Table 4 shows measured annual precipitation for the four sites. Precipitation was consistently greater at Burgettstown than at the other three sites.

Precipitation varies somewhat with the seasons; the highest rainfall is in spring and summer (fig. 7). July has the highest average monthly precipitation, which is caused by intense thunderstorms of short duration.

Figure 5.--Cumulative departure of annual precipitation from 37-year (1949-85) average at Burgettstown.

Figure 6.--Annual precipitation at Burgettstown, 1949-85.

Site	Water year						
	1983	1984	1985				
Brush Run	37.34	37.23	31.73				
Daniels Run	35.27	36.86	31.74				
Enlow Fork	32.19	34.72	35.78				
Burgettstown	40.75	40.04	37.50				

Table 4.--Annual precipitation at four raingages, 1983-85

[Values in inches]

Figure 7.--Average monthly precipitation for 37 years of record (1949-85) at Burgettstown.

GROUND-WATER SYSTEM

<u>Occurrence</u>

Ground water is the subsurface water in the zone of saturation--the zone in which all voids in the subsurface material are filled with water. The surface of this zone is the water table. An aquifer is a formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield useable quantities of water to wells and springs. Aquifer is used in this report in strictly the general sense. A formation name associated with the term aquifer is not meant to imply the formation is part of a formal aquifer name. A bedrock aquifer normally has several discrete water-bearing zones that supply much of the ground water to the well. Normally, a single water-bearing zone is not capable of providing enough water to a well for both domestic and livestock uses combined in this region.

The permeability of an aquifer is a measure of the relative ease with which the aquifer can transmit water. Connective openings within an aquifer can be formed at the time of material deposition (primary permeability--water between grains of sand) or after solidification of the aquifer material (secondary permeability--fracturing of rock). The size and the degree of interconnection of these openings control the permeability of the aquifer. Unconsolidated sand and gravel deposits normally have relatively large and well connected pore spaces, and therefore have a high primary permeability. In contrast, water movement in bedrock is largely controlled by secondary permeability created by fracture openings both parallel and perpendicular to bedding planes.

The primary permeability in most sandstone and siltstone aquifers is largely reduced by calcareous and siliceous cement in the pore spaces. However, because of the presence of fractures, the sandstone units are known to be major ground-water producers and have supplied sufficient water for domestic and stock uses (Kent, Schweinfurth, and Roen, 1969, p. 12). Limestone, coal, and shale have less primary permeability than siltstone, but limestones may be exceptionally permeable near the land surface where slightly acidic recharge water forms cavities by dissolving the limestone. According to Stoner and others (1987), sandstone and coal beds in Greene County have the greatest secondary permeability because fractures in the other types of rocks may be filled with clay, which would reduce the water-transmitting characteristics. Water-bearing zones commonly are found at the contact between different lithologic units because of horizontal fracture openings along the contact and the lower permeability of the underlying confining unit.

Stress-relief fracturing (Wyrick and Borchers, 1981) is thought to be the dominant cause of secondary permeability in aquifers. Stress-relief fractures (horizontal and vertical) result from the removal of compressional stress on underlying rocks by the erosion of overlying rocks. Valleys are formed by extensive erosion of the bedrock, which results in a high number of horizontal stress-relief fractures in valley aquifers, whereas hilltop and hillside topographic settings generally contain vertical stress-relief fractures. The number of fractures is thought to decrease in two directions: from valley to hilltops and with increasing depth. Furthermore, in the deep aquifer systems, the reduction in number and size of vertical fractures causes ground water to flow dominantly along bedding-plane fractures from recharge areas to discharge areas.

Water-bearing zones reported by drillers in the study area are generally no deeper than 150 ft from land surface. Furthermore, the computer flow model (Appendix A) shows that more than 90 percent of the total ground-water recharge remains within 150 ft of the land surface. Ground-water flow in this shallow aquifer system generally follows topography, moving from the recharge areas near hilltops to discharge areas in valleys.

Water commonly enters wells through fracture openings oriented along bedding planes. Figure 8 shows examples of graphic and geophysical logs from a well with three distinct water-bearing zones within the Waynesburg Formation. The water-bearing zones in figure 8 are located at bedding plane openings between different rock types; limestone and sandstone, shale and sandstone, and coal and shale. The discrete water-bearing units tapped by the well include two sandstone layers and a coal bed. During drilling, observations of water were noted at depths of 31.5, 53, and 96 ft. The caliper log confirmed fractures in the rock at these depths.

<u>Availability</u>

Information on the availability of ground water is given in the hydrologic properties column on plate 1 and in the well and spring tables (Appendixes C and D). The data in Appendixes C and D were obtained from several sources including water-well completion reports from drillers, field measurements, and previous studies. Location of the wells and springs in Appendixes C and D are found on plates 3A and 3B.

Well depth, reported yield, water level, and specific-capacity data from the well inventory and previous reports are summarized statistically in table 5. Well yields and specific capacities generally are based on drillers' records. Specific capacity (SC) decreases with increased pumping rates and time in low permeability aquifers. Therefore, a well pumped at 5 gal/min, with 10 ft of drawdown, [SC=0.5 (gal/min)/ft] will not necessarily discharge 10 gal/min with a 20-ft drawdown.

The five principal water-bearing units tapped for ground-water supplies in Washington County are in the Greene, Washington, Waynesburg, Uniontown, and Pittsburgh Formations. The mean values of reported yields for the five formations range from 8.8 to 15 gal/min. The ll-gal/min mean of reported yields for the Greene Formation may be high because of the small sampling size and several wells with high reported yields.

The alluvial aquifers and the aquifers in the Casselman and Glenshaw Formation have the largest mean reported yields, however, they also have the smallest areal extent. The highest mean reported yield was 194 gal/min for the alluvial aquifer. The Casselman Formation had the highest mean reported yield of the bedrock aquifers (46 gal/min).

Water levels in wells of the same depth and construction will vary because of topographic setting and head in the water-bearing zones. Water levels in wells generally are shallow in valleys and become deeper with increasing elevation to hilltops. The mean of measured water levels and mean depth of wells located in upland draws, valleys, hillsides, and hilltops are as follows:

	Mean depth to water level (feet below land surface)	Number of wells	Mean well depth (feet below land surface)	Number of wells
Upland draw	21	11	104	13
Valley	22	58	88	97
Hillside	42	201	102	345
Hilltop	62	94	114	185

31

	Well depth (feet)			Reported yield (gal/min)			Water level (feet below land surface)			Specific capacity (gal/min)/ft		
Aquifer	Number of wells	Mean	Range	Number of wells	Mean	Range	Number of wells	Mean	Range	Number of wells	Mean	Range
Alluvium	4	40	7- 63	4	194	100-350	4	8	3- 14	2		1.6-5.1
Greene Formation	66	81	15-204	13	11	2- 35	38	33	5- 90			
Washington Formation	114	107	19-310	39	9.6	.5- 50	62	52	8- 38	6	1.2	.03-3.3
Waynesburg Formation	148	99	15-310	30	10	.5- 60	93	43	3-170	4	1.6	.18-2.8
Uniontown Formation	137	101	15-285	26	15	1- 75	73	38	F-170	2		.0824
Pittsburgh Formation	140	114	18-250	49	8.8	.33- 50	79	47	F-170	1		.04
Casselman Formation	25	139	44-438	15	46	2-160	13	57	F-150	2		9.7-22
Glenshaw Formation	6	112	60-165	4	33	1-110	2		33- 55	1		.52

Table 5.--Summary of well depths, reported yields, water levels, and specific capacities by aquifer [F, flowing; --, no data available; gal/min, gallon per minute; (gal/min)/ft, gallons per minute per foot]

Water-Level Fluctuations

Water levels were recorded continuously at selected wells located on plates 4A and 4B to improve the understanding of aquifer response to recharge and discharge. Private wells and several drilled observation wells in adjacent Greene County also were used to aid in understanding. Each well was tested to ensure that the well had a good hydraulic connection with the aquifer. Water-level data for observation wells are published in the annual report "Water Resources Data, Pennsylvania, Volume 3," for 1984 and 1985 (U.S. Geological Survey, 1984, 1985).

Short Term

Water levels in wells respond not only to changes in the recharge and discharge rates of the aquifer, but also to some external forces such as barometric pressure.

Daily water levels and precipitation from December 1984 to May 1985 are compared for various topographic settings in figure 9. Well depths ranged from 74 ft for well WS-182 to 218 ft for well GR-803. Plate 4B shows the locations of these wells. Water-level fluctuations differ significantly from hilltop to valley topographic settings. Hilltop wells WS-271 (depth 176 ft) and WS-277 (depth 126 ft) and upland draw well WS-265 (depth 99 ft) had the largest water-level fluctuations. The water levels in hilltop well WS-277 fluctuated more than 40 ft. In contrast, the water levels in valley well GR-803, tapping a confined aquifer, fluctuated less than 1-1/2 ft (fig. 9). Intermediate water-level fluctuations are represented by well WS-182, which is on a hillside. The water-level fluctuations in hilltop well WS-271 are different than fluctuations in hilltop well WS-277 even though they are within 2 mi of each other (plate 4A). The responses (rounded peaks) of well WS-271 to recharge are slower and smaller than the responses (pointed peaks) of well WS-277 (fig. 9). Well WS-271 taps a confined aquifer that has a hydraulic conductivity one order of magnitude larger than the aquifer tapped by well WS-277. Well WS-277 taps an unconfined aquifer, has a smaller hydraulic conductivity than well WS-271, and responds more readily to recharge. Well WS-277 receives recharge directly from percolation of rain water. In addition, because the aquifer tapped by well WS-277 has a smaller hydraulic conductivity and probably a lower storage coefficient than the aquifer tapped by well WS-271, its water levels rise faster and higher for a small amount of recharge.

Figure 9.--Relation of water levels in wells to daily precipitation and topographic position for December 1984 through May 1985.

Seasonal and Long Term

The factors causing seasonal water-level fluctuations include precipitation, evaporation, and transpiration. Water levels are generally the lowest in September and October, and highest in December, March, and April. Annual water-level fluctuations usually range from less than 3 ft beneath a valley to about 13 ft beneath an upland draw.

Water-level data show the effects of evapotranspiration. During late summer and early fall, water levels generally are the lowest. The evaporation of surface water and the transpiration by plants usually are highest during this period, and potential recharge to the aquifers by precipitation is reduced. During the winter and spring, the water levels tend to recover because of recharge from snowmelt and rainfall, when evaporation and transpiration are at a minimum.

Water levels were measured continuously from 1971-85 in well WS-155 (plate 4B). Mean monthly water levels based on daily low levels are shown in figure 10. Daily low levels averaged for each month closely approximate the actual monthly mean because daily water-level fluctuations commonly are less than 0.3 ft in well WS-155. Water levels rose from 1971 to the early part of 1975, had relatively little change from 1975 to the middle of 1981, and then gradually declined from 1981 to September 1985. The general water-level trend in well WS-155 only partially correlates with the precipitation trend at the Burgettstown precipitation station (fig. 10) because the well is artesian and because of differences in precipitation patterns and the distance (about 22 mi) between the station and the well.

Figure 10.--Average monthly precipitation and daily maximum depth to water in well WS-155, 1971-85.

34

Aquifer Characteristics

Determination of the hydraulic characteristics of the aquifer systems is necessary for the design of water supplies for municipalities and for the design and construction of a computer ground-water flow model. These characteristics, or properties, include transmissivity, hydraulic conductivity (or permeability), and storage coefficient for confined aquifers, which are determined by well-testing methods. With these characteristics, the effects of human-induced stresses on aquifer systems can be estimated. For example, estimates can be made of water-level declines in aquifers caused by pumping at wells and pumping of mine inflow (surface and underground).

Ideally, aquifer testing requires a pumped well and one or more observation wells that are within the zone affected by the pumping stress on the aquifer. However, with bedrock wells, single well testing is common. The analysis of the drawdown versus time data utilized in this report include the techniques of Theis (1935), Cooper and Jacob (1946), and Papadopulos and Cooper (1967). The results of the single-well tests are greatly influenced by aquifer conditions adjacent to the well. Therefore, the results from the single-well tests are not as reliable, nor as representative, as those from aquifer tests employing observation wells at some distance from the pumping well.

In Greene and Washington Counties, secondary permeability is the dominant component of aquifer permeability and is related to the number, size, and extent of interconnected fractures within the aquifers. Primary permeability is related to the formation of the basic rock type (lithology) prior to any bending and breaking of the rock mass. The ranking of hydraulic conductivity from highest to lowest among bedrock water-bearing units is: (1) coal bed, (2) sandstone, (3) siltstone and shale, and (4) limestone. Coal beds commonly have the greatest density of fractures, while sandstone has the highest primary permeability. Most of the permeability of siltstone and shale is attributed to fractures, which commonly are filled with clay. Limestone has the lowest relative permeability because of high density and clay content. The depth of the aquifer and the topographic position of the well also affect the average conductivity. Stoner and others (1987) reported that the hydraulic conductivity decreases one order of magnitude for every 100 ft of depth and that well sites in valleys have the largest hydraulic conductivities, while well sites on hilltops have the smallest. Wyrick and Borchers (1981) speculate that stress-relief fracturing is responsible for the changes in hydraulic conductivity for wells in different topographic positions.

The hydrogeology of Washington County is similar to that of adjacent Greene County, which was investigated by Stoner (1983) and by Stoner and others (1987). In the fractured sedimentary rock aquifers in Greene County, aquifer-testing methods determined that average hydraulic conductivities range from 2.4 \times 10⁻⁶ to 50 ft/d (feet per day). Storage coefficients from aquifer tests range from 0.6 \times 10⁻⁶ to 8 \times 10⁻⁴.

For Washington County, the drawdown plots for aquifer tests are presented in Appendix H and the resulting aquifer characteristics are presented in table 6. The average hydraulic conductivity of the bedrock determined by aquifer tests ranges from 0.003 to 1.2 ft/d. Hydraulic conductivity was determined by dividing the calculated transmissivity by the thickness of the aquifer tested at the well. The median specific capacity of the bedrock wells tested is 0.10 (gal/min)/ft of drawdown, and individual specific capacity values lie within the range of values for the formations listed in table 5. These test results fall within the range of aquifer characteristics reported for Greene County.

The results of an aquifer test with an observation well are shown in table 6. The wells tested penetrate the lower 105 ft of the Waynesburg Formation and the upper 14 ft of the Uniontown Formation. The wells are in the Enlow Fork Valley of northern Greene County, immediately adjacent to the southern border of Washington County (plate 4B). The storage coefficient of the aquifer test is reported by Stoner and others (1987) in the section titled Burdette Test Site.

Aquifer-test data indicate that the alluvial aquifer tapped by well GR-804 (plate 4B) had the highest hydraulic conductivity (table 6). The alluvial aquifer is composed mostly of silt and clay. However, a gravel layer of high permeability with a thickness of less than 1 ft is the probable cause for the high hydraulic conductivity value for the well.

Fable	6Summary	of	aquifer-test	data	and	results
				,		

[gal/min,	gallons	per minute;	ft ² /d,	square	feet

per day; ft/d, feet per day; --, no data]

Well number	Geologic formation	Date	Depth of interval tested (feet) ¹	Pumping rate (gal/min)	Duration of pumping (hours)	Trans- missivity (ft ² /d)	Average hydraulic conductivity (ft/d)	Total draw- down (feet)	Method of analysis ²
			Ag	ifer test w	with pumped we	ll only			
WS-155	Washington	07-01-71	39-140	2.0	1.5 (2.6)	1.0 15	0.01 .15	17.0	C&J,'46 T Recovery
WS-155	Washington	08-23-83	39-140	4.6	2.0	18	.18	60.8	C&J,'46
WS-181	Waynesburg	08-19-83	40- 92	2.0	1.3	65	1.2	1.4	C&J,'46
WS-182	Waynesburg	08-26-83	25- 75	3.2	2.8	35 31	.7 .6	10.1	P&C,'67 C&J,'46
WS-205	Waynesburg	08-24-83	15- 91	2.0	1.5	19 24	. 25 . 32	11.6	C&J,'46 P&C,'67
WS-265	Uniontown	07-12-83	22- 99	4.4	1.0	3 4	.04 .05	51.2	P&C,'67 C&J,'46
WS-271	Washington	12-05-84	46-176	17.5	.43	18	. 14	23	T Recovery
WS-277	Pittsburgh	07-13-83 08-19-83	83-125 77-125	1.4 2.4	.48 .71	1 2	.02	36.2 35.0	C&J,'46 C&J,'46
₩S-322	Washington	05-03-84	22-125	2.3	1.7 (3.7)	. 7 . 4	.007 .003	74.7	C&J,'46 I Recovery
GR-804 ³	Alluvium	09-29-80	5- 14	4.4	6.5	160 159	18 18	3.5	C&J,'46 T Recovery

Well number	Geologic formation	Date	Pumping rate (gal/min)	Duration of pumping (hours)	Trans- missivity (ft ² /d)	Average hydraulic conductivity (ft/d)	Storage coefficient	Total draw- down (feet)	Method of analysis ²
			Ac	uifer test wi	th observat	ion well			
GR-802 ³	Waynesburg	09-30-80 07-29-81	12 23.7	5.2 15.9 (25.6)	84 130 57 81	0.6 1.0 .4 .6		6.6 26.5 26.5	C&J,'46 Theis C&J,'46 T Recovery
GR-803 ³	Waynesburg	09-30-80 07-29-81			120 81 330 68	1.0 .6 2.6 1.9	1.7×10^{-4} 9.0 × 10 ⁻⁵	5.4 6.6 18.6	Theis C&J,'46 Theis I Recovery

¹Depth below land surface.

²C&J,'46, Cooper and Jacob, 1946; T Recovery, (Theis Recovery) Theis, 1935; P&C,'67, Papadopulos and Cooper,1967; Theis, Theis, 1935.

³Data from Stoner and others, 1987.

<u>Flow</u>

Local

Rainfall and snowmelt percolate through the soil zone and enter the local aquifer system at the water table. Water will flow along paths of least resistance towards areas of lower head. Flow generally parallels topography moving downward from hilltops to valleys. Occasionally, an impermeable layer or bedding separation will divert water laterally to discharge as a hillside spring or seep. In upland draws and valleys where the head is lower, water will flow laterally or upward to streams where the ground water is discharged. In general, the local flow system is confined to a zone within 150 ft of the land surface.

Regional

Local flow systems lose some of their water to the underlying regional flow system by slow downward vertical leakage. Regional flow is predominantly lateral toward major valleys. Velocity in the regional system is very low in comparison to that of the local flow system. Discharge from the regional aquifer system is by upward leakage beneath major valleys such as the Monongahela and Ohio River Valleys.

Briny water [water with greater than 35,000 mg/L (milligrams per liter) dissolved solids] is first encountered at depths of 900 to 1,200 ft below land surface according to oil and gas well drilling records. The top of this saline water marks the base of the fresh water (less than 1,000 mg/L dissolved solids) flow system.

Flow Model and Results of Simulations

A three-dimensional computer flow model of the unmined Brush Run basin was constructed to improve understanding of premining ground-water flow and hydrologic conditions in the county. Depth and quantity of ground-water flow, the sensitivity of variations in certain hydrologic parameters, and hydrologic boundaries were evaluated. Details of the model are available in Appendix A.

The flow model produces a simulated flow system by solving a series of equations containing known hydrologic factors and estimates of poorly known factors. The model is calibrated by comparing the output of the simulated flow system with the known hydrologic data of the real flow system (such as head, mine inflow, or stream discharge). Input parameters to the model (such as vertical and horizontal hydraulic conductivity) are then adjusted until a reasonably close match of model derived values and observed data is achieved. The calibrated model is used to improve understanding of the real flow system.

The calibrated model is known as the "hypothetical unmined-basin model" because of the limited amount of hydrologic data, the variability within the data, and because few data describing the lower aquifers of the model were collected during the study. If more data were available, a better model calibration would have been possible, and a more reliable model would have been produced. Conclusions from the flow model indicate that approximately 95 percent of the total ground-water recharge is in the upper 80 to 110 ft of bedrock (layer 1 of the model), and that the regional flow system (greater than 250 ft deep, represented by layers 3 and 4 of the model) probably removes less than 0.1 percent of the total ground-water recharge from the basin.

The water-level data collected for the project show that the heads in the aquifers within a basin generally follow the topography, but are subdued. The model shows that the relief of the head decreases with depth. Heads decrease downdip along geologic structure (when ground water moves from areas of recharge to discharge in the regional aquifers).

Data defining the hydrologic properties of the deep aquifer systems are meager. The model shows that the properties of the deep aquifers can vary substantially but have no effect on the shallow aquifers that supply water to almost all domestic wells.

The shallow aquifer system is most sensitive to changes of hydrologic factors within that system. The amount of ground-water recharge, and the impediment of ground water to discharge into streams by alluvium or vertical anisotropy within the aquifer may cause head fluctuations of up to 30 ft or more.

Vertical gradients may provide clues to the hydrologic nature of the deep aquifer system. If the amount of ground-water recharge remains about the same, and if the shallow aquifer is cased off in the well, a gentle downward vertical gradient on deep hilltop and hillside wells may be indicative of deep aquifers with higher vertical hydraulic conductivity. A steep downward vertical gradient under the same conditions may indicate deep aquifers with low vertical hydraulic conductivity. A very small upward gradient in a deep valley well may indicate the presence of a vertical fracture zone.

A vertical fracture zone probably would lower the head in a small tributary valley and increase head in a valley setting. The components of a ground-water flow budget for a basin with a deep vertical fracture probably would differ from those in an unfractured basin by less than 1 percent of the total ground-water recharge.

Guidelines for Developing Supplies

The individual homeowner generally has little choice in the selection of a well site. Usually the well location is restricted to the proximity of the residence and a power supply, and the only consideration given to well siting is the prevention of possible contamination. Siting of a ground-water supply for stock, commercial, or public use may not be as restricted. For both situations, an understanding of the geologic and hydrologic information given in this report, combined with proper well construction, may make the difference between a successful and unsuccessful well or spring. The following facts and procedures, listed in order of importance, may be helpful when considering a ground-water supply.

General Procedures

- The yields and quality of water of nearby wells and springs often indicate what can be expected at a site. Altitude of reported water-bearing zones and springs mark the location of aquifers. However, there may be large variations in groundwater yield in short distances because of the variation of fractures.
- 2. The best time for well construction and spring development is during dry periods, when water levels are lowest. Optimum setting of the pump and adequacy of the well are best tested when water levels are low. The relative permanence of a proposed spring is also best established during this period. The water quality commonly is at its worst during dry periods.
- 3. Most bedrock aquifers in Washington County include fractured rocks located within 150 ft of land surface. Drilling a well deeper than 150 ft generally will not increase aquifer yield. Dissolved solids generally tend to increase with well depth because of the longer residence time of ground water produced from deep water-bearing zones. Drilling deeper than 150 ft also increases the probability of encountering saline water with undesirable concentrations of sodium chloride. Additional problems with deep wells include high initial costs for drilling and high pumping costs because of deep-water levels commonly found in hilltop, hillside, and some upland draw areas.
- 4. Storage capacity is important where wells yield meager supplies of water. Storage tanks or reservoirs may be used to provide necessary storage. Consideration may also be given to drilling wells with as large a diameter as practical to provide as much storage capacity as possible in the well itself. For example, each foot of water in a 6-in.-diameter well represents about 1-1/2 gal (gallons). Each foot of water in an 8-in.-diameter well represents about 2-1/2 gal. Thus, a 6-in.-diameter well that contains 50 ft of water has 75 gal in storage and an 8-in.-diameter well, 125 gal. The cost of drilling a well with a diameter of more than 8 in. may become prohibitive below a certain depth. The cost of well storage needs to be compared to that of storage above ground level.

Site Selection Restricted

- 1. Topographic setting.--Procedures pertinent to the general topographic position of a ground-water supply are:
 - (a) Hilltop.--Drill only to the depth of sufficient yield. Drilling a well deeper for added yield or storage commonly results in water-level decline and sometimes complete loss of well yield. Also, an uncased deep well may reduce the yield of a nearby shallow well.
 - (b) Hillside.--In addition to procedures for the hilltop setting, hillside wells need to be sited at some distance from potential contamination points such as septic tanks, trash dumps, or stock pens located up gradient (usually uphill). At many hillside locations, springs are a suitable alternative to wells as a potable water supply; however, care must be taken to eliminate contamination when using springs for domestic supply. For stock water supply, the spring-box and storage-tank construction used by the U.S. Department of Agriculture, Soil Conservation Service (1969) has been successful. In some places, several springs can be developed and the combined discharge piped to the desired location. Where conservation is critical, multiple storage tanks may be used.
 - (c) Valley.--The depth of valley wells used for domestic supply may be limited because slightly saline ground water is shallowest beneath valleys. High yielding shallow wells are possible in the alluvium of major valleys, but ground water is susceptible to contamination by surface activities. Tightly cased deep wells in large valleys may be free flowing.

Site Selection Unrestricted

- On any given hillslope, springs developed farthest downhill are most likely to produce the highest sustained yields during droughts.
- 2. Of all the topographic positions, wells in valleys will probably have the highest yields. These high yields commonly are because of fractures beneath the valley bottom that decrease in number and magnitude with depth. This fracturing also tends to be less extensive beneath adjacent hills. The extent of bedrock fracturing in valleys and adjacent hillsides varies from site to site. Therefore, an aquifer test of more than 24 hours needs to be done on valley wells proposed for public or commercial use to document if sufficient quantity of water exists for proposed needs. Such a test also can be used to document the possible interference of heavy pumping on nearby wells.
- 3. Locating fracture traces can help in choosing sites of optimum yield inasmuch as most wells are completed in bedrock and water mainly moves through fractures in the bedrock. The most conspicuous linear features can be identified and plotted on aerial photographs of the general area of interest. These aerial photographs can then be used to help locate possible fracture traces in the field. The best site for a well is at the intersection of two or more traces. Parizek and others (1971) determined that the width of fracture zones ranged from 15 to 60 ft and averaged 39 ft in the siltstones and shales of western Pennsylvania. A hydrogeologist could be consulted to locate such narrow zones by this method. The ground-water flow model indicated that a fracture zone beneath a hilltop or hillside may drain the shallow aquifers. So a well drilled to shallow depth on a hilltop fracture trace may not always be successful.

General information on the development of small well-supply systems may be obtained from a manual prepared by the U.S. Environmental Protection Agency (1975) entitled "Manual of Individual Water Supply Systems." The manual includes sections on drilled- and dug-well construction, spring development for domestic use, and sanitary protection of water supplies. The publication may be obtained from the Superintendent of Documents, Government Printing Office (Stock number 055-001-00626-8), Washington, D.C. 20402.

SURFACE WATER

Low-Flow Frequency

Understanding low-flow characteristics of streams is essential in determining the adequacy of streamflow for particular uses and for use during periods of little or no rainfall. Low-flow-frequency data may be used to: (1) design industrial and domestic water-supply systems, (2) classify streams as to their potential for waste dilution, and (3) maintain channel flows as required by agreement or by law. Low-flow characteristics of a stream also are good indicators of the amount of ground-water flow to the stream. Low flows in areas with similar geology and basin size are usually of the same order of magnitude.

The low-flow characteristics at a streamflow-gaging station generally are described by a low-flow frequency curve, which is a graph relating the magnitude and frequency of annual minimum flows for a given number of consecutive days. The 7-day, 10-year low flow is the low-flow index most commonly used as a critical-flow factor and as a minimum dilution flow in the design of waste-water treatment plants. The 7-day low flow will be less than the 7-day, 10-year low flow at intervals averaging 10 years in length; or the probability is 1/10 that the 7-day low flow in any one year will be less than the 7-day, 10-year low flow. The reliability of a low-flow frequency curve, based on natural flows, is related closely to the length of streamflow record; the longer the period of record, the more reliable the curve.

The longest records of daily flows for an unregulated stream in the study area are those for Brush Run (site 25). Twenty years of streamflow record (1962-78 and 1983-85) are available at this site. Figure 11 shows the family of low-flow frequency curves for 7, 14, 30, and 60 consecutive days for Brush Run (site 25) for 1968-78 and 1983-85. The period 1962-67 was not used in this analysis because it was statistically different from the long-term record. Inspection of the daily discharge data from Brush Run revealed many consecutive days of no flow in 1962-67 because of a drought. Figure 11 shows that the 7-day, 10-year low flow for Brush Run is 0.12 ft³/s (cubic feet per second). If the drought period was used in the analysis, the 7-day, 10-year low flow would have been 0.0 ft³/s.

The 7-day, 10-year low flows for three short-term streamflow-gaging stations (sites 20, 21, and 22) were assumed to be zero because of their small drainage areas and their proximity to Brush Run.

The computed 7-day, 10-year low flow for Enlow Fork near West Finley (site 16) of 0.30 ft³/s was determined from a regression analysis with Wheeling Creek at Elm Grove, W. Va. (site 37), a long-term gaging station about 28 mi downstream from site 16.

The computed 7-day, 10-year low flow for Daniels Run near West Zollarsville (site 11) was $0.17 \text{ ft}^3/\text{s}$ and was estimated from a regression analysis with South Fork Tenmile Creek near Jefferson, Pa. (site 36), a long-term gaging station in Greene County about 3.7 mi south of the Daniels Run gage. Because Daniels Run is a highly regulated stream because of mine

43

pumpage into the stream and water loss from the stream in areas where there has been long wall mining, the computed 7-day, 10-year low flow is not indicative of natural conditions.

One or more base-flow discharge measurements taken each year at partialrecord stations can provide nearly as much low-flow information for comparison as a complete flow record of a few years (Riggs, 1972). Base-flow measurements made at the 29 partial-record stations throughout Washington County were compared with concurrent discharges from nearby long-term stations, and 7-day, 10-year low-flow discharge values were computed for the partial-record stations (fig. 12, table 7). The computed values for the partial-record stations are derived from limited data and the accuracy of the values may be questionable. Based on streamflow data from Brush Run (site 25) and long-term precipitation data from Burgettstown, the 7-day, 10-year discharge was assumed to be zero for the sites on unregulated streams with drainage areas less than 13 mi².

The low-flow frequency data (fig. 12 and table 7) generally indicate that low flows at sites in the south-central and southwestern part of the county were the lowest low flows per square mile in the study area, whereas sites in the eastern and northern parts of the county had the highest low flows.

PROBABILITY, IN PERCENT

Table 7.--Computed 7-day, 10-year low flows for long-term, short-term, and partial-record sites

Site number	7-day, 10-year discharge (ft ³ /s)	Drainage area (mi²)	7-day, 10-year discharge per square mile ([(ft³/s)/mi²] × 10-³)
1	3.0	54.5	55
2	. 57	22.3	26
3	.12	37.0	3.2
4	0	. 75	0
5	.49	13.6	36
6	.06	22.2	2.7
7	.89	52.6	17
8	0	11.1	0
9	.45	20.9	22
10	.62	12.2	51
*11	.03	8.47	3.1
12	.07	27.2	2.6
13	.13	51.6	2.5
14.	.03	13.5	2.1
15	.01	20.8	. 53
*16	. 30	38.1	7.9
17	.001	14.8	.07
18	0	10.4	0
19	.02	13.8	1.7
*20	0	3.97	0
*21	0	. 38	0
*22	0	.90	0
23	0	.98	0
24	.14	30.9	4.5
+25	0	10.3	0
26	0	9.17	0
27	.17	16.3	10
28	0	4.17	0
29	0	3.73	0
30	.18	13.9	13
31	0	7.84	0
32	.34	18.9	18
33	.64	19.9	32
34	0	7.10	0
35	.087	14.2	6.1
# +36	.37	180	2.0
°+37	.62	282	2.2

[ft³/s, cubic feet per second; mi², square miles; (ft³/s)/mi², cubic feet per second per square mile]

+ Long-term station.

* Short-term station.

Site 36 is in Greene County, Pa.

* Site 37 is in Ohio County, W. Va.

46

Flow Duration

The flow distribution and variability of streams may be shown by a flowduration curve (fig. 13). This curve is a cumulative-frequency curve at a stream site that shows the percentage of time a specific daily discharge was equaled or exceeded during a given period of record (Searcy, 1959). The flowduration curve shows the integrated effect of the various factors that affect runoff, such as precipitation, topography, geology, mining, urbanization, and agriculture. This curve also provides a convenient means for studying the flow characteristics of streams and for comparing one basin with another. The shape of the duration curve is indicative of the hydrologic and geologic characteristics of the drainage basin. A curve with a steep slope denotes a highly variable streamflow that is mainly from surface runoff. A curve with a flat slope indicates streamflow that is mainly from surface-water or groundwater storage, such as lakes, reservoirs, and permeable rocks. The low end of the duration curve characterizes the low flows of the stream. A flat slope at the low end of the curve indicates sustained base flow, and a steep slope indicates negligible base flow.

Duration curves that are used to compare streamflows in different basins must represent concurrent periods so that the differences between the curves are because of differences in climatic or drainage-basin characteristics and not because of the differences in flows for different periods of time. An example of this is illustrated in figure 13. The duration curve for Brush Run for 1983-85 is different than the curve for the period of record (1962-78 and 1983-85). The duration curve for the period of record includes 7 years (1962-67, 1973) when periods of no flow were common. The extremely steep slope at the lower end of the curve reflects the no-flow conditions. However, the shape of the lower end of the duration curve for 1983-85 indicates a sustained base flow for those 3 years of record.

Figure 14 shows the flow-duration curves developed for Brush Run (site 25), Enlow Fork (site 16), and Chartiers Creek (site 20) based on data collected from October 1982 through September 1985. Chartiers Creek had the most sustained base flow and Enlow Fork had the least sustained base flow. The steepness of the Enlow Fork curve indicates that this drainage basin has little ground-water storage.

Runoff Analyses

Total runoff in a stream consists of ground-water discharge (base flow) from the exposed or shallow aquifers plus surface runoff that travels over or through the soil to the stream. Runoff has a distinct seasonal variability. Highest runoffs normally occur in late winter and early spring because of ground-water discharge, icemelt, snowmelt, and high precipitation. Runoff generally decreases with the onset of warmer weather in response to increased rates of evaporation, transpiration, and soil absorption. Lowest runoffs generally occur in late summer and early fall. Table 8 shows the variation in runoff and precipitation measured at five Washington County gaging stations for 1983-85. Only 1 complete year of data (1985) was available for site 21, one of the two main inflows to Water-Supply Reservoir Number 4 in North Franklin Township. Mean runoff, in inches, in table 8 refers to the equivalent amount of water throughout the upstream drainage basin that would produce the corresponding mean runoff in cubic feet per second. The measured precipitation at all five sites was from 2 to 4 times greater than the mean runoff, and the annual water loss (difference between precipitation and runoff) ranged between 52 and 75 percent. Water loss is affected by evaporation, transpiration, diversion, mines, ground-water outflow, and plant and animal consumption. The annual water losses at the five gaging stations, represented as a percentage of precipitation, are:

	<u>1983</u>	<u>1984</u>	<u>1985</u>	<u>AVERAGE</u>
Brush Run at Buffalo (site 25)	69.5	62. 9	62.6	65.0
Chartiers Creek at Lagonda (site 20)	61.5	51.8	64.8	59.4
Enlow Fork near West Finley (site 16)	54.9	59.7	67.2	60.6
Daniels Run near West Zollarsville				
(site ll)	69.4	60.4	75.0	68.3
Unnamed Tributary 2B to				
Chartiers Creek at Lagonda (site 21)	No data	No data	62.6	

When surface water in a particular area is being considered as a potential source of water supply, water losses can be used to determine the most productive areas of runoff.

Table 8. -- Measured runoff and precipitation for five Washington County streamflow-gaging stations for water years 1983-85

[mi², square miles; ft³/s, cubic feet per second; (ft³/s)/mi², cubic feet per second per square mile; in., inches; --, no data]

			19	83			19	84			19	85		
	Drainage		Mean runoff		Measured	No. 10. 10. 10. 10. 10. 10. 10. 10. 10.	Mean runoff		Measured		Mean runoff		Measured	
Station	Station	area (mi ²)	ft ³ /s	$[(ft^3/s)/mi^2]$	in.	precipitation (in.)	ft ³ /s	[(ft ³ /s)/mi ²]	in.	precipitation (in.)	ft ³ /s	[(ft ³ /s)/mi ²]	in.	precipitation' (in.)
Brush Run near Buffalo, Pa.														
(site 25)	10.3	8.45	0.82	11.40	37.34	10.4	1.01	13.80	37.23	9.00	0.87	11.86	31.73	
Chartiers Creek ¹ at Lagonda, Pa.													*	
(site 20)	3.97	4.34	1.09	13,33	34,66	5,23	1.32	17.94	37,23	3.27	.82	11.18	31.73	
Enlow Fork near West Finley, Pa. (site 16)	38.1	40.8	1.07	14.52	32.19	39.1	1.03	13.99	34.72	32.9	. 86	11.74	35.78	
Daniels Run near Wes Zollarsville, Pa. (site 11)	t 8.47	6.73	. 80	10.78	35.27	9.08	1.07	14.60	3 6. 86	4.94	.58	7.92	31.74	
Unnamed Tributary 2E to Chartiers Creek at Lagonda, Pa.	3													
(site 21)	.38		'							.32	. 86	11.86	31,73	

¹No streamflow record from October 1 through November 21, 1982.

WATER QUALITY

Ground-Water Characteristics

Acidity, alkalinity, pH, specific conductance, iron, manganese, hardness, chloride, and sulfate are constituents and properties commonly used to evaluate ground-water quality. The analyses of ground-water samples from wells and springs in the county are shown in Appendixes E and F. Besides the wells and springs sampled during this study, two wells were sampled in the late 1960s and early 1970s, and 13 wells were sampled by Piper (1933).

The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels (MCLs)¹ and recommended maximum contaminant levels (RMCLs)¹ for selected contaminants of drinking water for public supply systems (table 9). The major ground-water-quality problems are elevated concentrations of iron, manganese, and dissolved solids, and high hardness. Minor ground-water-quality problems include elevated concentrations of fluoride, chloride, and sulfates. The source and significance of these and other constituents and properties of natural water are shown in table 10.

Contaminant	aximum contaminant lev (MCLs)	els Recommended maximum contaminant levels (RMCLs)
Arsenic (As)	0.05	
Barium (Ba)	1	
Cadmium (Cd)	.010	
Chromium (Cr)	.05	·
Lead (Pb)	.05	
Mercury (Hg)	.002	
Nitrate (N)	10	
Selenium (Se)	.01	
Silver (Ag)	.05	
Chloride (Cl)		250
Color (color units)		15
Copper (Cu)		1
Corrosivity		Noncorrosive
Foaming agents		.5
Iron (Fe)		.3
Manganese (Mn)		.05
Odor (threshold odo	r number)	3
pH (units)		6.5 - 8.5
Sulfate (SO4)		250
Total dissolved sol	ids	500
Zinc (Zn)		5
Fluoride (F)	1.4 - 2.4	Limit dependent on air temperature

[Limits in milligrams per liter except as indicated; --, no data available]

contaminant levels for selected contaminants of drinking water for public supply systems 1

Table 9.--Federal maximum contaminant levels and recommended maximum

¹U.S. Environmental Protection Agency, 1983, Drinking Water Standards (Information from Code of Federal Regulations #40, 1983, parts 141.11 and 143.3).

¹Maximum contaminant levels (MCLs) are levels of drinking-water contaminants that could cause health effects if exceeded and are enforceable by law. Recommended maximum contaminant levels (RMCLs) are levels of drinking-water contaminants that are not health related and are intended to protect public welfare by establishing unenforceable guidelines on the taste, odor, or color of drinking water.

Table 10.--Source and significance of constituents and properties of natural waters

[Adapted from Lloyd and Growitz (1977), p. 51-54; mg/L, milligrams per liter]

Constituent or physical property	Source or cause	Significance
Acidity	Primarily free mineral acids and carbonate acid. Common in areas where coal has been mined.	A limiting factor to aquatic organisms, especially fish life. Corrodes pipes, pumps, etc.; dissolves minerals, notably iron-bearing minerals.
Alkalinity	Primarily due to the presence of bicarbonate, carbonate, and hydroxide.	Ability to neutralize acids. Alkalinity may be undesirable for public supplies when in excessive concentrations.
Calcium (Ca) and magnesium (Mg)	Dissolved from almost all soils and rocks, especially limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Large quantities of magnesium are present in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness).
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage. Found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium gives salty taste to drinking water. In large quantities increases the corrosiveness of water. Above-average levels can indicate contamination by sewage, industrial wastes, or road-deicing chemicals.
Dissolved solids	Chiefly mineral constituents dissolved from rocks and soils; may include organic matter. Frequently excessive in coal- mining areas.	Excessive hardness, taste, mineral deposition, or corrosion are common properties of water high in dissolved solids. Waters with very low concentrations of dissolved solids often do not support aquatic life due to lack of nutrients and essential elements. Water becomes unsuitable for many purposes when it contains more than 1,000 mg/L dissolved solids.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Also, often added to public water supplies with chlorine.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of calcification. However, it may cause mottling of the teeth depending on the concentration of fluoride, age of the child, amount of drinking water consumed, and susceptibility of the individual.
Hardness as calcium carbonate (CaCO ₃)	Nearly all the hardness in most waters is due to calcium and magnesium. Iron, manganese, aluminum, and free acid also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called noncarbonate hardness. Waters of hardness up to 60 mg/L are considered soft; 61-120 mg/L, moderately hard; 121-180 mg/L, hard; more than 180 mg/L, very hard.
Iron (Fe)	From practically all rocks and soils. High in coal-mine drainage, from coal preparation plants, and from landfills. Most high concentrations are a result of oxidation processes and are usually unrelated to coal mining.	In streams affected by coal-mine drainage, reddish-brown iron precipitates blanket stream bottoms. More than about 0.3 mg/L of iron stains laundry and porcelain. In higher concentrations, gives an unpleasant taste (Durfor and Becker, 1964). Methods to remove from drinking water include water treatment by oxidation followed by filtering or ion exchange processes.
Manganese (Mn)	From many rocks and soils. Can be found in unusually high concentrations in coal-mine drainage. Most high concentrations are a result of oxidation processes and are usually unrelated to coal mining.	More than 0.05 mg/L can cause brown spots in laundry and dark precipitates. Imparts an unpleasant taste. May coat rocks on stream bottoms.
Sodium (Na) and potassium (K)	Dissolved from almost all rocks and soils. Found in ancient brines, sea water, some industrial brines, and sewage.	Large amounts in combination with chloride give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes.

Table 10.--Source and significance of constituents and properties of natural waters--Continued

[Adapted from Lloyd and Growitz (1977), p. 51-54]

Constituent or physical property	Source or cause	Significance
Βq	Summary effect of the acid and alkaline constituents in solution. Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonate, bicarbonate, hydroxide and phosphate, silicate, and borate raise the pH.	pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. The pH is a measure of hydrogen-ion activity. The corrosive properties of water generally increase with decreasing pH; however, excessively alkaline water may also attack metals.
Silica (SiO ₂)	Dissolved from almost all rocks and soils, generally in small amounts from 1-30 mg/L. High concentrationsas much as 100 mg/Lgenerally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high-pressure boilers to form deposits on blades of steam turbines.
Specific conductance (microsiemens per centimeter at 25 °C)	Mineral content of the water.	Specific conductance is a measure of the capacity of water to conduct an electric current; varies with concentration and degree of ionization of the constituents. Varies with temperature; reported at 25 °C.
Sulfate (SO4)	Dissolved from rocks and soils containing gypsum, iron sulfide, and other sulfur compounds. Generally present in mine waters and in some industrial wastes and sewage.	Chief anion in mine drainage and in all high dissolved-solids water. Forms sulfuric acid. May cause detectable tastes at concentrations of 300-400 mg/L. At concentrations above 600 mg/L may have laxative effect.
Temperature	Shallow wells show some seasonal fluctuations in water temperature. Ground water from moderate depths generally is nearly constant in temperature, which is near the mean annual air temperature of the area. In very deep wells the water temperature generally increases on the average about 1 °F with each 100-foot increment of depth. Seasonal fluctuations in temperature of surface water are comparatively large-depending on the depth of waterbut do not reach the extremes of air temperature.	Affects the usefulness of water for many purposes. For most uses, a water of uniformly low temperature is desired.

*

.

ź

-

-d

General Ground-Water-Quality Constituents

Concentrations of iron and manganese above USEPA RMCLs (table 9) are common in the ground water in the county. More than 33 percent of the water samples had iron concentrations greater than the USEPA RMCL; 30 percent had manganese concentrations greater than the limit.

Hard water is a common water problem in the county. More than 75 percent of the wells and all of the springs sampled had very hard water. Water from seven wells had fluoride concentrations greater than the MCL; the maximum concentration was 7.0 mg/L. Six of the seven wells were in valleys, and four tapped the Pittsburgh Formation.

Water sampled from five wells had chloride concentrations that exceeded the RMCLs; the maximum concentration was 1,200 mg/L. Several wells sampled had sulfate concentrations that exceeded the RMCLs; the maximum concentration was 600 mg/L.

Concentrations of arsenic, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc for wells sampled were less than drinking-water levels established by the USEPA (table 9). These and other trace-element concentrations are shown in Appendix F.

Dissolved-solids concentrations have been used to determine the salinity of water. The following are salinity terms assigned for water containing elevated concentrations of dissolved solids (Hem, 1985, p. 157):

Term	Dissolved solids (mg/L)
Slightly saline	1,000 - 3,000
Moderately saline	3,000 - 10,000
Very saline	10,000 - 35,000
Briny	More than 35,000

Seven wells sampled had slightly saline water. Four of the seven wells with slightly saline water tap the Washington Formation. Saline water is found at variable depths. Saline water generally is closest to land surface in the larger stream valleys where there is regional discharge of ground water.

The USEPA RMCL for total dissolved-solids concentration is 500 mg/L (table 9). Dissolved-solids concentrations (not total dissolved solids) for wells and springs sampled are in Appendix E. The dissolved-solids concentrations in more than one-third of the wells sampled exceeded 500 mg/L. The water in half of the wells sampled that tap the Pittsburgh Formation had concentrations greater than 500 mg/L. The maximum dissolved-solids concentration (2,460 mg/L) was also from a well that taps the Pittsburgh Formation.

Specific conductance can be used to estimate dissolved-solids concentrations. The mean ratio of dissolved-solids concentration to specific conductance ranged from 0.56 (Glenshaw Formation) to 0.64 (Casselman Formation). The mean ratio for 82 well analyses was 0.60, and the mean ratio for six spring analyses was 0.59. Therefore, the dissolved-solids concentration of the ground water may be estimated by multiplying the specific conductance by 0.60.

Specific conductance and pH were measured at inventoried water wells whenever possible. The specific conductance of inventoried wells ranged from 120 to 2,750 μ S/cm (microsiemens per centimeter at 25 degrees Celsius). The pH of inventoried wells ranged from 5.7 to 9.1. Although the range of pH is outside the USEPA RMCLs, most pH values were less than the RMCLs.

Water Quality of Bedrock Formations

Glenshaw Formation

All four sampled wells tapping the Glenshaw Formation had soft to moderately hard water. The pH ranges from 7.4 to 8.3. Specific conductance ranges from 520 to 1,400 μ S/cm.

Casselman Formation

Three wells were sampled from the Casselman Formation. One well had iron concentrations that exceeded USEPA RMCLs (table 9). Water from two wells had manganese concentrations that exceeded USEPA RMCLs (table 9). Well WS-324 had concentrations that exceeded USEPA RMCLs for sulfate (530 mg/L) and dissolved solids (1,000 mg/L). The pH ranged from 6.2 to 7.5. Specific conductance ranged from 470 to 1,750 μ S/cm.

Pittsburgh Formation

Water-quality problems in the Pittsburgh Formation include elevated concentrations of dissolved solids, iron, fluoride, manganese, and chloride, and hardness. Water in half of the wells sampled in the Pittsburgh Formation had dissolved-solids concentrations that exceeded USEPA RMCLs (table 9). The water in well WS-240 had the maximum dissolved-solids concentrations (2,460 mg/L) of all the wells sampled. Samples from one-fourth of the wells had iron concentrations greater than USEPA RMCLs; the maximum concentration was 850 μ g/L (micrograms per liter) in well WS-914. Water in four of the 20 wells sampled had fluoride concentrations that exceeded USEPA MCLs; the maximum concentration was 7.0 mg/L in well WS-289. Manganese concentrations exceeded USEPA RMCLs (table 9) in the water of three wells. The water in well WS-240 had the maximum chloride concentration (1, 200 mg/L) of all wells sampled. Very hard water was found in 70 percent of the wells sampled. The pH ranged from 5.9 to 8.6. The specific conductance ranged from 365 to 4,400 μ S/cm.

Uniontown Formation

Elevated iron and manganese concentrations are common in the ground water in the Uniontown Formation. About one-third of the samples had an iron concentration that exceeded USEPA RMCLs; the maximum concentration was from well WS-219, 4,300 μ g/L. Samples from almost half of the wells had a manganese concentration greater than the USEPA RMCLs; the maximum, 370 μ g/L, was from well WS-265. More than 80 percent of the wells sampled that tap the Uniontown Formation had very hard water. Spring WS-72 had a sulfate concentration of 440 mg/L. The pH ranged from 5.9 to 9.1. The specific conductance ranged from 287 to 2,000 μ S/cm.

Waynesburg Formation

Iron and manganese concentrations exceeded USEPA RMCLs in samples from one-third of the wells. The maximum concentration for iron and manganese were 3,300 μ g/L in well WS-189 and 1,100 μ g/L in well WS-586, respectively. Water in almost 30 percent of the sampled wells had dissolved-solids concentrations that exceed USEPA RMCLs; the maximum concentration was 1,110 mg/L in well WS-609. Water from well WS-609 also had elevated fluoride and chloride concentrations. Very hard water was found in more than 85 percent of the wells sampled. The pH ranged from 6.1 to 8.2. The specific conductance ranged from 225 to 1,600 μ S/cm.

Washington Formation

The Washington Formation had more water-quality problems than any other formation tested. Iron concentrations in samples of more than half the wells exceeded USEPA RMCLs; the maximum iron concentration (4,500 μ g/L) was in well WS-322. Samples in more than 40 percent of the wells had manganese concentrations that exceeded USEPA RMCLs; the maximum concentration (350 μ g/L) was in well WS-271. Dissolved-solids concentrations in samples from about one-third of the wells exceeded USEPA RMCLs. The maximum chloride concentration (950 mg/L) was collected from well WS-579. Water sampled from well WS-297 had the maximum concentration of sulfate (600 mg/L). Almost 80 percent of the wells sampled in the Washington Formation had very hard water. The pH ranged from 5.7 to 7.9. Specific conductance ranged from 270 to 1,550 μ S/cm.

Greene Formation

Iron concentrations exceeded USEPA RMCLs in water from three of the seven wells sampled. Water in two wells had elevated dissolved-solids concentrations. The water in all seven wells was very hard. The pH ranged from 6.4 to 7.4. Specific conductance ranged from 120 to 1,420 μ S/cm.

Water Quality of Unconsolidated Deposits

Carmichaels Formation

Because of limited areal extent and the small number of wells completed in the Carmichaels Formation, water-quality data were not available.

<u>Alluvium</u>

Of the sparse data available, some indicate the water in the alluvium may exceed USEPA RMCLs for iron and manganese.

Changes Along Flow Path

A trilinear diagram, figure 15, is one method of comparing results of chemical analyses of water. This diagram consists of two lower triangles that show the percentage distribution, on a milliequivalent basis, of the major cations [magnesium (Mg⁺⁺), calcium (Ca⁺⁺), and sodium (Na⁺) plus potassium (K⁺), and the major anions; chloride (Cl⁻), sulfate (SO₄⁻⁻), and carbonate (CO₃⁻⁻) plus bicarbonate (HCO₃⁻)], and a diamond-shaped part above that summarizes the dominant cations and anions to indicate the overall water type.

The water types are designated according to the area in which they occur on the diagram segments. For example, sea water and brine would lie in the sodium chloride-sulfate segment, and acid mine drainage would lie in the calcium-magnesium sulfate-chloride segment. Water types are determined by the cations and anions with concentrations greater than 50 percent. In figure 15, the water type for hillside and valley wells, Group III, is sodium bicarbonate. If no cation or anion concentration exceeds 50 percent, then the water type is described by the two ion concentrations with the highest percentages. For example, in the hillside wells, Group II, the water type is calcium-sodium bicarbonate.

Group I contains a Subgroup IA. The predominant water types in Subgroup IA are calcium-bicarbonate-chloride and calcium-magnesium-bicarbonate-sulfate. Subgroup IA has a mean dissolved-solids concentration of 838 mg/L and a mean sulfate concentration of 258 mg/L. These mean concentrations exceed USEPA RMCLs (table 9). The elevated sulfate concentrations may partly reflect the presence of abundant pyrite in coal beds, which are part of the aquifer.

Water types were found not to be related to geologic units except for the Greene and Glenshaw Formations. The water type for all six wells sampled from the Greene Formation was calcium bicarbonate. The water type for all four wells sampled from the Glenshaw Formation was sodium bicarbonate. The small number of wells sampled in the Greene and Glenshaw Formations may account for the apparent relation of water type to these geologic units. Water types appear to be unrelated to rock lithologies such as sandstone, limestone, and shale. The vertical movement and mixing of ground waters passing through fractured bedrock composed of a variety of rock types probably contribute to the variability of water types within lithologies and formations.

Changes Over Time

Two wells that were sampled for water quality during this investigation had been sampled previously. Well WS-155 near Good Intent was sampled in July 1971 and again in August 1983. The water quality had not changed appreciably in 12 years (Appendixes E and F). Well WS-74, located at the middle school in Hickory (inset J Hickory, plate 3a), was sampled by Piper (1933) in September 1926. The well was resampled in August 1983. The schools' present water system combines the water from wells WS-74 and WS-440. Analyses show significant increases in concentrations of calcium, sulfate, chloride, and dissolved solids from 1926 to 1983. The chloride concentration of the 1983 sample was almost five times greater than the chloride concentration of the 1926 sample. Newport (1973, p. 27) stated that the water quality of shallow freshwater aquifers has been degraded by saltwater that moved upward under artesian pressure through oil and gas boreholes that have no well casings or have casings that are severely corroded.

Surface-Water Characteristics

A network of 35 sampling sites was established throughout the county to assess the surface-water quality (table 3, fig. 1). The sampling sites selected were on: (1) main streams in the county; (2) streams considered to have a high recreational value (such as those designated by the Pennsylvania Fish Commission as approved trout waters and other such streams inhabited by warm-water species of game fish); (3) inflows to public surface-water supply reservoirs; or (4) streams where AMD has had a detrimental effect on the water quality.

All 35 sites were sampled at high base flow in May 1983 and at low base flow in August 1983, 1984, and 1985. Sites 11, 16, 20, 21, 22, and 25 were at streamflow-gaging stations and were sampled more often than other sites throughout the study period. Sites 11 and 25, at the outflows of a mined and an unmined basin, respectively, were sampled 11 times. Sites 16, 20, 21, and 22 were sampled 6 times. Site 16 also was sampled 29 times from August 1979 through August 1982 as part of the Greene County water-resources study. Site 15, which was also a water-quality site for the Greene County study, was sampled 9 times from March 1980 through August 1981. Sites 1, 2, 3, 6, 8, 10, 13, 27, 28, 32, 33, and 34 were sampled 6 times from June 1979 through August 1981 when they were part of the U.S. Geological Survey Coal Hydrology Network. All water-quality data collected during the study are shown in Appendix G. Data collected prior to October 1982 were published by the U.S. Geological Survey (1979, 1980, 1981, 1982) in annual water-resource data reports.

The constituents and properties used to evaluate the water quality include pH, acidity, alkalinity, specific conductance, dissolved solids, calcium, magnesium, sodium, potassium, fluoride, chloride, sulfate, silica, iron, and manganese. Table 10 shows some of the sources and significance of the constituents and properties used to evaluate the water quality. This information is helpful in understanding the controls on quality of water and the possible consequences if concentrations of certain constituents were to exceed RMCLs. Table 9 gives the USEPA MCLs and RMCLs for selected contaminants of drinking water for public supply systems.

The four base-flow samples collected in May 1983 and August 1983, 1984, and 1985 are used to assess the countywide water-quality conditions. All samples were collected under the same climatic and hydrologic conditions. Base-flow samples generally contain the highest concentrations of dissolved constituents because they are least affected by dilution from surface runoff and are therefore often indicative of the poorest water-quality conditions for that particular stream. Figure 16 shows the relative magnitude areally of dissolved solids.

The dissolved-solids concentration often is used in evaluating the overall water-quality condition of a stream and is a convenient means of comparing the surface-water quality throughout the county. Individual ions, pairs of ions, and complexes made up of several ions all contribute to the dissolved-solids concentration. The principal inorganic anions in surface water include the carbonates, chloride, and sulfate. The principal cations include calcium, magnesium, sodium, and potassium. In coal-mined areas, the weathering and oxidation of pyrite and other minerals produce elevated concentrations of iron, manganese, and sulfate, which can contribute to unusually high dissolved-solids concentrations. The USEPA RMCL for dissolved solids in drinking water is 500 mg/L; water becomes unsuitable for many other purposes when dissolved-solids concentration exceeds 1,000 mg/L. Figure 16 shows the sites where the maximum measured concentrations of dissolved solids were less than 500 mg/L, from 500 to 1,000 mg/L, and greater than 1,000 mg/L. Dissolved-solids concentrations greater than 1,000 mg/L generally were found in northern and eastern Washington County where coal mining and AMD are most prevalent. Concentration of dissolved solids generally varies inversely with stream discharge. During base flow, stream discharge is sustained by groundwater discharge that generally has an elevated concentration of dissolved solids because of its prolonged contact with minerals in soils and rocks. During high flow, stream discharge is mostly from precipitation and surface runoff that have relatively low concentrations of dissolved solids because the short period of contact with soluble minerals at the surface. This is illustrated in figure 17, which shows the relation between discharge and dissolved-solids concentration at Enlow Fork near West Finley (site 16).

The pH in natural streams normally ranges between 6.5 and 8.5 and the pH of almost every stream sampled in Washington County fell within that range. In coal-mined areas, a pH below 6.5 usually indicates the presence of AMD and a pH less than 4.5 usually indicates the presence of untreated AMD. The pH of only two sampled streams was less than 6.5. The pH of four samples collected on Robinson Run at McDonald (site 31) ranged from 6.2 to 6.5. The pH of four samples collected on Raccoon Creek at Raccoon, Pa. (site 32) ranged from 4.4 to 6.8. Both of these streams drain areas with numerous abandoned deep and surface mines. Other sites sampled in the northern and eastern part of the county are in areas of active and abandoned coal mines, but a combination of AMD treatment or natural stream alkalinities and dilution appear to be capable of raising stream pH to above 7.0.

Acidity and alkalinity of a stream are measures of the stream's buffering capacity or its ability to resist a pH change upon the addition of a base (acidity) or an acid (alkalinity). A stream having a pH of 4.5 to 8.3 has both acidity and alkalinity. If the acidity exceeds the alkalinity, the stream is considered to be acid, whereas if alkalinity exceeds the acidity,

	MAXIMUM DISSOLVED-SOLIDS
SITE LOCATION	CONCENTRATION,
AND NUMBER	IN MILLIGRAMS PER LITER
10	GREATER THAN 1,000
27 😜	500 to 1,000
17 🔿	LESS THAN 500

Figure 16.--Maximum dissolved-solids concentrations measured in streams.

Figure 17.--Relation between water discharge and dissolved-solids concentrations at Enlow Fork near West Finley, Pa. (Site 16).

the stream is considered to be alkaline. In this report, acidity and alkalinity are expressed as equivalent concentrations of calcium carbonate $(CaCO_3)$ in milligrams per liter. At site 31, the mean acidity was 69 mg/L, and the mean alkalinity was 22 mg/L. At site 32, the mean acidity was 63 mg/L, and the mean alkalinity was 24 mg/L. At the other 33 sites, the alkalinity greatly exceeded the acidity. The mean alkalinity at these sites ranged from 86 to 345 mg/L, and the mean acidity ranged from 0 to 8.8 mg/L.

Beall (1975), in a reconnaissance of water quality of streams in the sixcounty Greater Pittsburgh Region, found the highest alkalinities (greater than 200 mg/L) in a group of streams in central Washington County that includes Pike Run (site 9), Pigeon Creek (site 7), Mingo Creek (site 6), Little Chartiers Creek (site 3), and Buffalo Creek (site 24). He also observed high alkalinity in southern and western Washington County streams.

According to Biesecker and George (1966), alkalinities of less than 50 mg/L are relatively incapable of neutralizing large quantities of acid mine drainage that enter the receiving stream. The alkalinities at 33 sites greatly exceeded 50 mg/L; these streams probably would have a neutralizing effect on most acidic inflow.

Sulfate, iron, and manganese are three constituents often associated with AMD. AMD is produced by the oxidation of pyrite (FeS_2) normally present in coal and adjacent rock strata. The oxidation of pyrite usually is described by the following reaction in which pyrite, oxygen, and water form sulfuric acid and ferrous sulfate:

$$2\text{FeS}_2 + 70_2 + 2\text{H}_20 = 4\text{H}^+ + 2\text{Fe}^+ + 4\text{S0}^{2^-}.$$
 (2)

Oxidation of ferrous iron (Fe²⁺) produces ferric ions (Fe³⁺) according to the following reaction:

$$2Fe^{2+} + 1/2 O_2 + 2H^+ = 2Fe^{3+} + H_2O.$$
 (3)

When the ferric ions react with water, it produces an insoluable ferric hydroxide $[Fe(OH)_3]$, also referred to as "yellow boy," and more acid:

$$Fe^{3+} + 3H_20 = Fe(OH)_3 + 3H^+.$$
 (4)

The above reactions produce elevated concentrations of ferric hydroxide [Fe(OH)], sulfate (SO_4^{2-}) , and acid (H^+) . Secondary reactions of the acidic water dissolve many other constituents associated with coal deposits, such as manganese, aluminum, and zinc. Laboratory analyses for aluminum and zinc were not done in this study. The highly mineralized water collects in mine impoundments and spoils where it eventually evaporates, percolates downward into underlying aquifers, or runs off into streams. If the receiving stream is sufficiently alkaline, the acidic water may exist only for a short time before being neutralized. However, natural neutralization or deliberate neutralization (treatment with an alkaline agent) does not change the concentration of sulfate, and therefore, sulfate persists as an indicator of mine drainage. A good example of this is seen from data collected on Daniels Run at West Zollarsville, Pa. (site 10). This site is downstream from two treated deep-mine discharges. The sulfate concentrations there were the highest measured at any site (2,600 mg/L maximum, 1,900 mg/L mean), and yet the pH ranged from 8.1 to 8.8, and the alkalinity ranged from 180 to 460 mg/L. According to Toler (1982), sulfate concentrations in excess of 100 mg/L in base-flow conditions can be attributed to drainage from coal-mined areas.

Maximum sulfate concentrations measured in streams throughout Washington County ranged from 40 to 2,600 mg/L. Mean concentrations ranged from 35 to 1,900 mg/L. Figure 18 shows that sulfate concentrations were highest in northern and eastern Washington County where most of the active and abandoned coal mines are located. There is evidence of either active or abandoned, surface- or deep-mining activity upstream from every sampling site where the maximum measured sulfate concentrations exceeded 100 mg/L.

At all sites except 31 and 32, maximum total-iron concentrations ranged from 240 to 9,200 μ g/L, and maximum dissolved-iron concentrations ranged from 9 to 160 μ g/L. Although elevated concentrations of dissolved iron usually are associated with acid mine discharges, quite often the iron precipitates out a short distance downstream from where the acid mine discharge enters the receiving stream. Therefore, dissolved-iron concentration is not a reliable indicator of AMD. Dissolved iron in waters void of dissolved oxygen that originate from ground water or deep mines usually is in the ferrous form

(Fe²⁺). When this water is pumped from the deep mines or seeps to the land surface, the ferrous iron (Fe²⁺) is readily oxidized to the ferric form (Fe³⁺) and usually precipitates out as ferric hydroxide, a yellow-orange precipitate usually referred to as "yellow boy" (see reactions on p. 64). This precipitate is noticeable in many streams in the northern and eastern part of the county where AMD is common. At sites 31 and 32, the maximum dissolved-iron concentrations were 29,000 and 13,000 μ g/L, respectively, and the maximum total-iron concentrations were 33,000 and 14,000 μ g/L, respectively. Although iron precipitates out in these two streams, as is apparent from the large deposits of yellow boy, elevated concentrations of iron remain in the dissolved phase because of low pH and incomplete neutralization.

Manganese is found in various salts and minerals, commonly in association with iron compounds. In mined areas, the consumption of oxygen in the oxidation of pyrite produces a reducing environment that increases the concentration of soluble manganese. Dissolved-manganese concentrations usually persist in streams for greater distances downstream from the source than do dissolved-iron concentrations (Hem, 1985). This was observed at Harmon Creek near Hanlin Station (site 33) where numerous abandoned mines are located throughout the basin. Elevated sulfate concentrations and elevated pH indicate that a large volume of treated acidic mine water enters the stream above the site. The average dissolved-iron concentration was low (17 $\mu g/L$), but the average dissolved-manganese concentration was rather high (650 $\mu g/L$), indicating that much of the iron had precipitated out. This was observed at site 33 in the four base-flow samples collected during the study and in six samples collected from June 1979 through August 1981 during various streamflow conditions.

HYDROLOGIC EFFECTS OF COAL MINING

Surface mining and underground mining of coal have affected ground-water resources and streamflow, depending on the siting of the mining operation and the geology of the area.

Aquifers in the overburden are affected by surface-mine operations causing water supplies from wells to be reduced or eliminated, as evidenced by declining water levels and wells going dry. In areas of mine spoils and refuse piles, infiltration of precipitation causes rapid weathering of minerals and the production of AMD, which has a low pH and contains elevated concentrations of iron, manganese, sulfate, and dissolved solids. The AMD commonly flows into nearby streams and local aquifers. In the area of surface mining, the water from these mine spoils also extends the period of increased base flow compared with areas of little or no mining activity.

In areas of underground mine operations, water resources are affected when fractures in the bedrock are connected with aquifers and streams. These effects depend on the thickness between the underground mine operation and the overlying water resource, and on the permeability of the overburden material. Overburden of large thickness and low permeability will minimize the effects of deep mining on overlying water resources.

Ground-Water Quantity

Known Hydrologic Effects

Water levels in mined areas

Water levels were measured in domestic water wells located over underground coal mines to ascertain the effects of coal mining on the domestic ground-water supply. A room and pillar mine (generally uncollapsed roof rock) is about 350 ft below the town of Hickory. Water levels in 25 Hickory wells showed no recognizable decline from past mining during the 3 years of measurement. However, premining water-level data were not available to compare with the post-mining water-level data collected during the study. Underground mining in the Hickory area had ceased approximately 1 year prior to the beginning of this study.

Water levels in 14 domestic water wells were measured for 3 years in the partly mined Daniels Run basin (plate 4B). The minimum depth to coal in the basin is 400 ft. The only domestic well in the Daniels Run basin known to have gone dry because of mining was well WS 210. This well was 30 ft deep and in the main valley of the basin. The bottom of the well was about 400 ft above an active coal mine. According to the well owner, the well became dry when the roof rock collapsed in the mine.

<u>Mine inflows</u>

Determining mine inflow is difficult because abandoned mines may be contributing to mine inflow in an active mine, and commonly the quantity of this contribution is not known. Furthermore, variations and fluctuations of mine inflow into an active mine are often not known or reported. The quantity of mine inflow depends on depth to coal, thickness of the coal removed, mining methods, rock mechanics, overburden, lithology and structure, and the aquifer properties. Figures reported to the Pennsylvania Department of Environmental Resources (Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, McMurray District Office, oral commun., 1984) of inflow to mines in Washington County, ranged from 0.05 to more than 0.7 $(ft^3/s)/mi^2$ (cubic feet per second per square mile) of mined area. The measured mine inflow in the Daniels Run basin was 300,000 gal/d (Vesta Mining Company, oral commun., 1984), which is about 0.15 $(ft^3/s)/mi^2$ of mined area-- an inflow on the low end of the range.

Simulation of a Mined Basin

The objective of simulating an underground coal mine is to evaluate the effect of mining on hydrology in general and on the ground-water supplies overlying subsurface coal not yet mined.

A three-dimensional computer model (Appendix B) was used to simulate several possible underground mine situations. Model sensitivity to the following conditions was studied:

- aquifers of varying hydraulic conductivity above and below the mine
- permeability changes caused by fracturing from mine subsidence
- depth to mining
- vertical fracture zones

Summary of results of the mined-basin simulation

(1) Hydrologic information about the bedrock aquifers beneath the shallow ground-water system (greater than 150 ft deep) generally is lacking. However, the geologic and hydrologic characteristics of these deep aquifers control the effect of deep coal mining on the shallow ground-water system. (2) The magnitude of the vertical hydraulic conductivity (either preexisting or induced by mine subsidence) between the shallow aquifers and the mine largely controls the amount of ground water entering the mine and the effects on the shallow aquifers. When the vertical hydraulic conductivity was increased by a factor of four, the mine inflow increased by almost the same factor. (3) The depth to an uncollapsed mine was a sensitive variable; the ground-water model indicated that increasing the depth to a mine by 200 ft caused mine inflow to be reduced by one order of magnitude. (4) The source for most of the ground water flowing into a mine is the strata overlying it. Model results indicate that, for a mine situated in excess of 300 ft below land surface, the combined horizontal and vertical contribution from the regional ground-water system comprises less than 0.5 percent of the total mine inflow. (5) The shallow ground-water system may be independent of the underground mining system. If there are no vertical fracture zones and the mine has not collapsed, then the model results indicate that there would be a poor connection between the shallow aquifer and the mine when the vertical hydraulic conductivity is low and the vertical distance between the shallow aquifer and the mine exceeds about 250 ft. Drawdown of head in shallow aquifers and reduction in base flow of overlying streams because of mining may be minimal, but drawdowns of head in deeper aquifers closer to the deep coal mine may be significant (200 to 300 ft vertical distance). Varying the values of the hydrologic factors of the shallow aquifers (such as recharge, stream drainage, ground-water flow entering from surrounding basins) had little effect on the amount of mine inflow. Increased ground-water recharge because of mine subsidence fractures may also offset the detrimental effects of the head drawdown in the shallow aquifers and reduction of stream base flow. (6) Location and amount of mine inflow determines how much and where the shallow aquifer system will be If mine inflow is distributed evenly over a large area, drawdowns affected. in the shallow aquifer system will be distributed evenly in the area over the mine; however, if the mine inflow is localized, such as at mine collapsed areas and fracture zones, the effects of mining on the shallow ground-water system will also be localized. The greater the amount of water flowing into a mine, the greater will be the drawdown of head in the shallow aquifer system. (7) Drawdown of the head in the shallow aquifers did not vary according to topography but was distributed evenly when an uncollapsed mine was postulated to be about 250 ft below land surface in the main valley. However, in the area over a collapsed mine, drawdowns of head in the valley wells may be smaller than those in hillside wells because the increased fracturing allows ground water to move more easily from the hillsides to discharge areas in the valley streams.

Ground-Water Quality in Mined Areas

In order to document any changes underground mining might have on groundwater quality, ground water should be sampled several years before mining, during mining, and several years after mining. Premining and postmining sampling should include periods of above-average, average, and below-average recharge. Establishment of a premining water-quality data base is necessary in order to compare it with the during- and postmining collected data.

The premining, during-mining, and postmining samples necessary to determine the water-quality changes caused by mining could not be collected during this investigation. However, evaluation of the ground-water-quality data suggests the predominant water types for mined areas are the same as Subgroup IA (calcium bicarbonate chloride-type water and calcium magnesium bicarbonate sulfate-type water) and Group I (calcium bicarbonate-type water) of figure 15. Sulfate concentrations in Subgroup IA exceed USEPA RMCLs and are caused by aquifers containing coal beds with abundant pyrite.

Stoner and others (1987) report that well owners in Greene County reported an objectionable sulfur odor and an iron taste in their water during and after underground mining. Where mining lowers water levels in wells, iron and manganese in the shallow aquifer system may be oxidized. Water quality may be degraded by increased concentrations of iron, manganese, sulfur, and dissolved solids.

Surface Water in Mined Areas

The hydrologic effects of coal mining on streamflow can be significant, depending on the section of the stream being measured and the stream's location with respect to the mining operation. Other variables that can individually or collectively affect the streamflow as a result of mining include the geology, depth and type of mining, and the vertical distance between the stream and mine.

Streamflow and water quality of two small basins during 1983-85 were compared to understand the hydrologic effects of coal mining on surface-water quantity and quality. Brush Run basin (site 25), in west-central Washington County, was in the unmined section of the county, and Daniels Run basin (site 11), in southeastern Washington County, was in a partly mined section of the county. The drainage areas of the Brush Run and Daniels Run basins were 10.3 and 8.47 mi², respectively. The topography, geology, land-use, and geographical shape of both basins are similar. Precipitation amounts recorded in both basins throughout the study also were similar (table 4).

Streamflow

Continuous streamflow data were collected at a gaging station in each basin throughout 1983-85, and the data are in data reports for Pennsylvania published annually by the U.S. Geological Survey (1983, 1984, 1985). High and low base flow seepage-run data were collected throughout both basins on five separate occasions and are reported in tables 11 and 12. Daniels Run and Brush Run basins were divided into the subbasins shown in figures 19 and 20, respectively. Figure 19 also shows the type and extent of underground mining in the Daniels Run basin. On all five seepage runs, the data were collected on one day for one basin and on the next day for the other basin, and there was no appreciable amount of precipitation during the 3 days prior to each run. Most stream discharges were assumed to be from ground-water discharge and not to include overland runoff.

Data collected on October 19 and 20, 1982, best represent very low baseflow conditions in both basins. Conversations with permanent residents in both basins indicated that late summer and fall of 1982 was one of the driest periods experienced within the last 10 years. Stream discharges at the Brush Run mainstem sites (sites 8, 12, 25) progressively increased downstream.

Stream discharges at the Daniels Run main stem sites (sites 5, 8, 14, 17, 20, 11) both increased and decreased downstream and the total stream discharge at the gaging station (site 11) was 0.253 ft³/s or 0.030 (ft³/s)/mi² (table 12). From site 5 to site 8, the main stem discharge decreased 46 percent, and from site 17 to site 20, the main stem discharge decreased 13 percent. Figure 19 shows that mines underlie both of these main stem sections of the stream. A gradual decrease in streamflow from site 8 to where the tributary at site 9 entered the main stem was observed in the field. About 500 ft downstream from site 9, the main stem streamflow completely disappeared. The main stem streambed remained completely dry for about 1.3 mi until the tributary at site 10A entered the main stem. Contribution of streamflow from other tributary sites gradually increased streamflow in the main stem to site 17, but from site 17 to site 20, streamflow again decreased. Water losses in the mainstem sections were all attributed to underground mines. Complete water loss near site 9 on the main stem was attributed to mine collapse and rock fracturing as a result of longwall mining in that area of the basin. Water loss between sites 17 and 20 appeared to be caused by retreat mining in the lower part of the basin. Low-base-flow discharge data collected on June 23, 1983, and November 9, 1984, in Daniels Run also show a streamflow loss in the main stem in the area of longwall mining. Discharge measurements made on June 23, 1984, at additional main-stem sites between tributary sites 9 and 10 confirmed a streamflow loss in that specific reach. These data are not listed in table High-base-flow data collected on April 13, 1984, and April 24, 1985, 12. indicate that Daniels Run gained water in the area located over the longwall mine. The increased ground-water discharge to the stream during high base flow probably masked the stream discharge lost to the mine or to subsurface strata.

Table 11.--Seepage-run discharge data collected in the subbasins throughout Brush Run

[mi², square miles; ft³/s, cubic feet per second; (ft³/s)/mi², cubic feetper second per square mile]

Subb asin number		Discharge											
	Drainage area (mi ²)	October 20, 1982		June 24, 1983		April 12, 1984		November 8, 1984		April 23, 1985			
		ft ³ /s	[(ft ³ /s)/mi ²]×10 ⁻²	ft ³ /s	$[(ft^3/s)/mi^2] \times 10^{-2}$	ft ³ /s	$[(ft^3/s)/mi^2] \times 10^{-2}$	ft ³ /s	$[(ft^3/s)/mi^2] \times 10^{-2}$	ft ³ /5	[(ft ³ /s)/mi ²]×10 ⁻²		
1	0.46	0.012	2.6	0,139	30.2	0.589	128	0.135	29.3	0,283	61.5		
2	. 50	.027	5.4	.218	43.6	.806	161	.186	37.2	.478	95.6		
3	. 58	.006	1.0	.155	26.7	.681	117	.132	22.8	.305	52.6		
4	.20	.009	4.5	.075	37.5	.441	220	.087	43.5	. 194	97.0		
5	1.31	.022	1.7	.334	25.5	2.02	154	. 392	29.9	.803	61.3		
6	. 27	.003	1.1	.080	29.6	. 377	140	.093	34.4	.180	66.7		
7	. 67	.018	2.7	.210	31.3	1.07	160	.258	38.5	.513	76.6		
¹ 8	3.71	.045	1.2	1.09	29.4	4.79	129	1.12	30.2	2.14	57.7		
9	. 20	.012	6.0	. 122	61.0	. 372	186	.065	32.5	.160	80.0		
10	. 24	.002	0.8	.045	18.8	. 222	92.5	.064	26.7	.095	39.6		
11	2.53	.093	3.7	.806	31.9	3.60	142	.904	35.7	1.46	57.7		
¹ 12	7.38	.154	2.1	2.35	31.8	9.56	130	2.30	31.2	4.78	64.8		
13	.40	.004	1.0	.105	26.2	.609	152	. 109	27.2	.246	61.5		
14	.96	.011	1.1	.286	29.8	1.20	125	.312	32.5	.658	68.5		
15	. 54	.022	4.1	. 133	24.6	. 526	97.4	.112	20.7	.359	66.5		
16	.36	.001	. 3	.177	49.2	.777	216	.086	23.9	,320	88.9		
¹ 25	10.3	.189	1.8	2.99	29.0	13.4	130	3.25	31.6	6.52	63.3		

¹Mainstem sites.

i.

Table 12Seepage-run discharge data collected in the subbasins throughout Da	aniels	Run
---	--------	-----

[mi	² , square	miles;	ft ³ /s,	cubic	feet per	second;	(ft ³ /s)/mi ²	, cubic	feet
per	second p	er squa:	re mile	; <, 1	ess than	l			

.

	Drainage area (mi ²)						Discharge					
Subbasin number		Oc	October 19, 1982		June 23, 1983		April 13, 1984		November 9, 1984		April 24, 1985	
		ft ³ /s	$[(ft^3/s)/mi^2] \times 10^{-2}$	ft ³ /s	[(ft ³ /s)/mi ²]×10 ⁻²							
1	0.36	0.010	2.8	0.065	18.0	0.512	142	0.067	18.6	0,136	37.8	
2	.25	.012	4.8	,062	25.0	.269	108	.067	26,8	,105	42.0	
3	.23	0	0	.057	24.8	.100	43.5	.021	9.1	.063	27.4	
4	.38	.008	2.1	.104	27.4	.392	103	.085	22.4	.218	57.4	
¹ 5	1.84	.050	2.7	. 489	26.6	1,93	105	.442	24.0	.797	43.3	
6	. 22	.004	1.8	.080	36.4	. 4 4 4	202	.036	16.4	.176	80.0	
7	.26	0	0	.024	9.2	.224	86.2	.053	20.4	.095	36,5	
1 ₈	2,22	.027	1.2	.552	24.9	2.71	122	.380	17.1	1.00	45.0	
9	. 45	.014	3.1	. 100	22.2	.881	196	.050	· 11.1	.319	70.9	
10	.11	0	0	.002	1.8	.082	74.5	<.001	<.9	.044	40.0	
10A	.29	.024	8.3	.077	² 26.6							
1 ₁₁	8.47	. 253	3.0	2.18	25,7	11.4	135	2.02	23.8	5.02	59.3	
12	.97	.039	4.0	.216	22.3	1.39	143	.245	25.3	.630	64.9	
13	1.09	.019	1.7	. 264	24.2	1.37	126	.168	15.4	.570	52.3	
1 ₁₄	5.15	.055	1.1	1.09	21.2	6.06	118	.756	14.7	2.90	56.3	
15	.13	0	0	.002	1.5	.080	61.5	DRY	DRY	.029	22.3	
16	. 26	.097	37:3	.265	102	.476	183	.362	139	.654	252	
¹ 17	5,67	.186	3.3	1.35	23.8	7.35	130	1.26	22.2	3.83	67.5	
18	. 10	.001	1.0	.017	17.0	.132	132	.040	40.0	.056	56.0	
19		0										
¹ 20	6.21	.162	2.6	1.62	26.1	8.61	139	1.37	22.1	3.26	52.5	
21	. 79	.017	2.2	. 209	26.4	1.12	142	.186	23.5	.703	89.0	
22	.70	.028	4.0	. 152	21.7	. 933	133	.108	15.4	.351	50.1	
23	1.63	.041	2.5	. 324	19.9	1.92	118	. 235	14.4	.975	59,8	
24	2.20	.054	2.4	.636	28.9	3.33	151	.518	23.5	1.64	74.5	

¹Mainstem sites.

 2 Site eliminated by a mine shaft.

Figure 19.--Subbasins and mined areas in Daniels Run basin.

---- SUBBASIN BOUNDARY

---- BASIN BOUNDARY

• 8 SUBBASIN NUMBER AND MEASUREMENT SITE

Figure 20.--Subbasins in Brush Run basin.

The large streamflow contribution to Daniels Run from the tributary at site 16 resulted from pumping ground water that entered the deep mines into the tributary. If the stream discharge at site 16 was replaced by the stream discharge of site 2 (subbasins 2 and 16 are of equal size), the discharge at the mouth of the basin (site 11) on October 19, 1982, would be 0.020 (ft³/s)/mi². This compares very closely with the stream discharge at the mouth of the unmined Brush Run basin on October 20, 1982, which was 0.018 (ft³/s)/mi². When this same type of adjustment was made to Daniels Run outflows on three of the other four seepage runs, the discharge values for Daniels Run were equal to or slightly less than those for Brush Run. In comparing the outflow discharges of the Daniels Run and Brush Run basins, the deep-mining operations in Daniels Run did not substantially lower the streamflow during base flow, assuming that Brush Run basin is a typical unmined basin that reflects premining hydrologic conditions. Underground mining did affect the streamflow in the middle and lower parts of the basin. However, the streamflow lost because of mining in the middle and lower parts of the basin reappeared downstream as ground-water discharge and was part of the outflow at site 11.

Water Quality

Eleven water-quality samples were collected at site 25 on Brush Run and at site 11 on Daniels Run, and the results of the analyses are given in Appendix G. None of the subbasins within the two basins were sampled individually and the samples reflect the water quality at the outflow site of each basin. All samples were collected during base-flow conditions, ranging from a very low base flow in October 1982 (0.189 ft³/s in Brush Run and 0.253 ft³/s in Daniels Run) to a high base flow in April 1984 (13.4 ft³/s in Brush Run and 11.4 ft³/s in Daniels Run). Figure 21 shows the maximum, minimum, and mean concentrations of selected constituents, most of which are indicators of mine drainage.

The pH was above neutral in both basins, ranging from 7.8 to 8.5 in Brush Run and from 7.9 to 8.7 in Daniels Run. Alkalinity was elevated in both basins, ranging from 140 to 190 mg/L in Brush Run and from 140 to 270 mg/L in Daniels Run. The elevated alkalinity of Daniels Run is attributed, in part, to natural stream alkalinity and also to excess alkalinity as a result of chemical neutralization of acid mine water, particularly from subbasin 16. The alkalinity in both basins appears to be high enough to neutralize moderate amounts of mine drainage entering the streams.

There is a significant difference in the range of dissolved solids concentrations of both basins. In Brush Run the range was from 245 to 307 mg/L. The mean concentration was 266 mg/L. In Daniels Run the range was from 305 to 2,680 mg/L. The mean concentration was 1,000 mg/L. The four highest dissolved-solids concentrations coincided with the four lowest stream discharges at both sites. This generally is typical of natural streams because dilution from increased runoff decreases the dissolved-solids concentration. However, the range of dissolved-solids concentrations during base-flow conditions generally is more like the narrow range for Brush Run than the wide range for Daniels Run. The elevated dissolved-solids concentrations in Daniels Run are attributed to treated mine-water discharges

entering the stream above site ll. Sulfate, sodium, and chloride are the constituents mainly responsible for the elevated dissolved-solids concentrations in Daniels Run.

Sulfate concentrations in Brush Run ranged from 40 to 58 mg/L and averaged 49 mg/L. Sulfate concentrations in Daniels Run ranged from 83 to 950 mg/L and averaged 310 mg/L, indicating a substantial amount of mine drainage in the stream at the sampling site.

Sodium and chloride ions are present in all natural waters, but concentrations generally are low. Exceptions occur when streams receive inflows from sources such as saline ground water or industrial wastes. The broad range and elevated concentrations of sodium and chloride ions in Daniels Run are attributed to saline water that is pumped from the deep mines into tributary streams.

The maximum and average fluoride concentrations in Daniels Run were greater than those in Brush Bun, but were less than 1.0 mg/L. The concentration of fluoride in most natural water, with a total dissolved-solids concentration less than 1,000 mg/L, is less than 1 mg/L (Hem, 1985, p. 122). The slightly elevated fluoride concentrations in Daniels Run are attributed to deep-mine discharges into tributary streams.

The range and average concentrations of dissolved and total iron were similar in both basins; however, the range and average concentration of dissolved iron were slightly higher in the unmined Brush Run basin. Most of the dissolved iron in the mine water being discharged into Daniels Run is assumed to be removed by treatment prior to being discharged into the tributary streams or into the main stem. There is no visual evidence that ferric hydroxide $[Fe(OH)_3]$, or "yellow boy," precipitates out in any of the tributary streams or in the main stem.

The average and maximum dissolved-manganese concentrations in Daniels Run were about double those in Brush Run. Dissolved-manganese concentrations usually persist in streams for greater distances downstream from a contaminant source (such as mine drainage) than do iron concentrations (Hem, 1985, p. 88).

Concentrations of other constituents, such as calcium, magnesium, potassium, and silica differed very little between the two streams. Although biological sampling of the streams was not an objective of the project and was not performed, the aquatic environment of Daniels Run did not appear to be threatened by mine drainage entering the stream. Visual observation indicated that the minnow and the crayfish populations in the stream were extremely large. There also was evidence of a fairly diversified macroinvertebrate population on the stream bottom.

Figure 21.--Maximum, minimum, and mean concentrations of selected constituents measured at the outflows of the Daniels Run (D) and Brush Run (B) basins.

CONCLUSIONS

Much of the water-resources information collected in Washington County during this study can be used as baseline data for choosing sites for future water-resource development and for determining changes in water conditions, particularly in the unmined area of the county. About 69 percent of county residents are served by public water-supply systems, and 99 percent of the water for public supply systems comes from rivers, streams, and reservoirs. The Monongahela River is the source of greater than 78 percent of the water for the public supplies. Data for 1984 indicated that the public water-supply systems provided an average of 24.2 Mgal/d. Thirty-one percent of the county residents depend on wells, springs, and cisterns for their water supply.

The five principal water-bearing units being tapped for ground-water supplies are in the Greene, Washington, Waynesburg, Uniontown, and Pittsburgh Formations. The mean reported yield of the five formations ranges from 8.8 gal/min in the Pittsburgh Formation to 15 gal/min in the Uniontown Formation. Depths to water generally are shallow in valleys and increase beneath hilltops. Annual water-level fluctuations usually range from less than 3 ft beneath valleys to about 13 ft beneath upland draws.

The 7-day, 10-year low-flow discharge for the 35 surface-water sites ranged from 0.0 to 0.055 $(ft^3/s)/mi^2$. A low-flow-frequency analysis indicates that sites in the south-central and southwestern part of the county had the lowest low flows per square mile, whereas sites in the eastern and northern parts of the county had the highest low flows.

The major ground-water-quality problems throughout the county are elevated concentrations of iron, manganese, and dissolved solids. Minor ground-water-quality problems include elevated concentrations of fluoride, chloride, and sulfate. Chemical water types change along the ground-water flow path from calcium bicarbonate type in predominantly hilltop settings to sodium chloride type in valleys. Residence time and complex chemical reaction are the controlling factors for the changes in water types.

Streamwater quality generally was poorest in northern and eastern Washington County where most of the active and abandoned coal mines are located. Sulfate concentrations were used as an indicator of AMD because the sulfate ion does not readily precipitate after natural or induced neutralization.

Stream alkalinity exceeded 50 mg/L at 33 of the sites, indicating that those streams probably would have a neutralizing affect on most acid inflow. The neutralization capacity of the streams also was evident in stream pH, which exceeded 6.5 at all 33 sites.

The poorest water quality was measured on Robinson Run at McDonald (site 31) and Raccoon Creek at Raccoon (site 32). Both of these streams drain areas containing numerous active and abandoned mines, and AMD has greatly deteriorated the stream quality.

The hydrologic effects of coal mining on surface-water quantity and quality were shown specifically by comparing the unmined Brush Run basin with the mined Daniels Run basin. Streamflow measurements were made during baseflow conditions at numerous sites in each basin. Streamflow in the main stem of Brush Run progressively increased downstream, indicating little, if any, water loss in the main stem channel. On the contrary, streamflow in the main stem of Daniels Run first decreased and then increased downstream, indicating a definite water loss in the upper part of the main stem channel. The decrease in streamflow occurred in areas with underground mines, and the decrease was greatest where longwall mining had taken place.

Comparison of water-quality samples collected during base-flow conditions at the outflow site of Brush Run and Daniels Run showed that, although Daniels Run is affected by AMD, the water-quality degradation is not significant.

The ground-water-flow model of the unmined Brush Run basin shows that about 95 percent of the total ground-water recharge is retained in the top 80 to 110 ft of bedrock, and that less than 0.1 percent of the total amount of ground water recharged is lost to the regional flow system. The model also shows that the hydrologic characteristics of the regional flow system can vary considerably but have very little effect on the shallow aquifers that supply water to almost all domestic wells.

The simulated mined model of the Brush Run basin shows that the vertical hydraulic conductivity (either existing or induced by mine subsidence) between the shallow ground-water system and the mine, and mine depth largely control the amount of ground water entering the subsurface mine and the effects on the shallow aquifers. The model also indicates that an increase in the depth of mining (room-and-pillar mining, no pillar extraction) from 200 to 450 ft below land surface would cause mine inflow to decrease by one order of magnitude.

REFERENCES

- Beall, R.M., 1975, Stream reconnaissance for nutrients and other water-quality parameters, Greater Pittsburgh Region, Pennsylvania: U.S. Geological Survey Water-Resources Investigations 50-74, 47 p.
- Berryhill, H.L., Jr., 1964, Geology of the Amity Quadrangle, Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map GQ-296, scale 1:24,000.
- Berryhill, H.L., Jr., and Schweinfurth, S.P., 1964, Geology of the Ellsworth Quadrangle, Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map GQ-333, scale 1:24,000.
- Berryhill, H.L., and Swanson, V.E., 1964, Geology of the Washington West Quadrangle, Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map GQ-283, scale 1:24,000.
- Berryhill, H.L., Jr., Schweinfurth, S.P., and Kent, B.H., 1971, Coal-bearing Upper Pennsylvanian and Lower Permian rocks, Washington area, Pennsylvania, Part 1. Lithofaces; Part 1. Economic and engineering geology: U.S. Geological Survey Professional Paper 621, 47 p., 8 pl.
- Biesecker, J.E., and George, J.R., 1966, Stream quality in Appalachia as related to coal-mine drainage, 1965: U.S. Geological Survey Circular 526, 27 p., 1 pl.
- Booth, C.J., 1986, Strata-movement concepts and the hydrogeological impacts of underground coal mining: Ground Water Journal, Assoc. Ground-Water Scientists and Engineers, Division NWWA, v. 24, no. 4, p. 507-515.
- Campbell, M.R., 1903, Brownsville-Connellsville folio, Pennsylvania, U.S. Geological Survey Geologic Atlas of the United States, Folio 94, 19 p.
- Chester Engineers, 1971, Report on water resources study at Tenmile Creek basin, Greene and Washington Counties, Pennsylvania: Commonwealth of Pennsylvania, Department of Forest and Water; 125 p.
- Clapp, F.G., 1907, Rogersville folio, Pa.: U.S. Geological Survey Geologic Atlas of the U.S., Folio 146, 14 p.
- Code of Federal Regulations #40: Revised as of July 1, 1983, Protection of Environment, pt. 100 to 149, 399 p.
- Cooper, H.H., Jr., and Jacob, C.E., 1946, A generalized graphical method for evaluating formation constants and summarizing well field history: Transactions American Geophysical Union, v. 27, p. 526-534.
- Durfor, C.N., and Becker, Edith, 1964, Public water supplies of the 100 largest cities in the United States, 1962: U.S. Geological Survey Water-Supply Paper 1812, 27 p.

- Griswald, W.T., and Munn, M.J., 1907, Geology of oil and gas fields in Steubenville, Burgettstown, and Claysville quadrangles, Ohio, West Virginia, and Pennsylvania: U.S. Geological Survey Bulletin 318, 77 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 2254, third edition, 263 p.
- Herb, W.J., Shaw, L.C., and Brown, D.E., 1981, Hydrology of area 5, eastern coal province, Pennsylvania, Maryland and West Virginia: U.S. Geological Survey, Water-Resources Investigations Report 81-538, 92 p.
- Hickok, W.O., IV, and Moyer, F.T., 1940, Geology and mineral resources of Fayette County, Pennsylvania: Pennsylvania Geological Survey 4th Ser., County Report 26, 530 p.
- Hobba, W.A., Jr., 1981, Effect of underground mining and mine collapse on the hydrology of selected basins in West Virginia: West Virginia Geological and Economic Survey, Report Investigation 33, 77 p.
- Kent, B.H., 1967, Geologic map of the Hackett Quadrangle, Washington County, Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map GQ-630, scale 1:24,000.
- _____1969a, Geologic map of part of the Carmichaels Quadrangle, southwestern Pennsylvania: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-588, scale 1:24,000.
- _____1969b, Geologic map of the Mather Quadrangle, southwestern Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map GQ-826, scale 1:24,000.
- _____1972, Geologic map of the Prosperity Quadrangle, southwestern Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map GQ-1003, scale 1:24,000.
- Kent, B.H., Schweinfurth, S.P., and Roen, J.B., 1969, Geology and land use in eastern Washington County, Pennsylvania: Pennsylvania Geological Survey, 4th Ser., General Geology Report 56, 31 p.
- Kohl, W.R., 1980, Jointing in outcropping rocks of Pennsylvanian age, Central Greater Pittsburgh Region, Pennsylvania: U.S. Geological Survey Open-File Report 80-23, 20 p.
- Lloyd, O.B., Jr., and Growitz, D.J., 1977, Ground-water resources of central and southern York County, Pennsylvania: Pennsylvania Geological Survey, 4th ser., Water Resource Report 51, 69 p.

- McDonald, M.G., and Harbaugh, A.W., 1984, A modular three-dimensional finitedifference ground-water flow model: U.S. Geological Survey Open-File Report 83-875, 528 p.
- Moebs, N.N., and Barton, T.M., 1985, Short term effects of longwall mining on shallow water sources, in Proceedings: Mine Subsidence Control, Bureau of Mines Technology Transfer Seminar, Pittsburgh, Pa., September 19, 1985. U.S. Department of the Interior, Bureau of Mines Information Circular 9042, 56 p.
- Munn, M.J., 1912, Description of Claysville Quadrangle, Greene and Washington Counties, Pa.: U.S. Geological Survey Geologic Atlas of the U.S., Folio 180, 14 p.
- Newport, T.G., 1973, Summary ground-water resources of Washington County, Pennsylvania: Pennsylvania Geological Survey, 4th Ser., Water Resource Report 38, 32 p.
- Page, L.V., and Shaw, L.C., 1977, Low-flow characteristics of Pennsylvania streams: Commonwealth of Pennsylvania, Pennsylvania Department of Environmental Resources, Office of Resources Management, Water Resources Bulletin 12, 441 p.
- Papadopulos, I.S., and Cooper, H.H., Jr., 1967, Drawdown in a well of large diameter: Water Resources Research, v. 3, p. 241-244.
- Parizek, R.R., White, W.B., and Langmuir, Donald, 1971, Hydrogeology and geochemistry of folded and faulted carbonate rock of the Central Appalachian type and related land use problems: the Pennsylvania State University, College of Earth and Mineral Sciences Experiment Station, Circular 82, 183 p.
- Pennington, D., Hill, J.G., Burgdorf, G.F., and Prie, D.R., 1984, Effects of longwall mine subsidence on overlying aquifers in western Pennsylvania: U.S. Department of Interior, Bureau of Mines, 129 p.
- Pennsylvania Department of Environmental Resources, Annual Water Supply Report, 1984, 6 p.
- Piper, A.M., 1933, Ground water in southwestern Pennsylvania: Pennsylvania Geological Survey, 4th Ser., Bulletin W1, 406 p.

_____1944, A graphic procedure in the geochemical interpretation of water analyses: American Geophysical Union Transactions, v. 25, p. 914-923.

Poth, C.W., 1962, The occurrence of brine in western Pennsylvania: Pennsylvania Geological Survey, 4th Ser., Bulletin M-47, 53 p.

- Riggs, H.C., 1972, Low-flow investigations: U.S. Geological Survey, Techniques of Water-Resources Investigations, book 4, chap. B1, 18 p.
- Roen, J.B., 1970, Geologic map of the Waynesburg Quadrangle, southwestern Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map, GQ-838, scale 1:24,000.
- _____1973, Geologic map of the Midway Quadrangle, Washington County, southwestern Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map, GQ-1067, scale 1:24,000.
- Roen, J.B., Kent B.H., and Schweinfurth, S.P., 1968, Geologic map of the Monongahela Quadrangle, southwestern Pennsylvania: U.S. Geologic Quadrangle Map GQ-743, scale 1:24,000.
- Roth, D., Engelke, M., and others, 1981, Hydrology of area 4, eastern coal province, Pennsylvania, Ohio, and West Virginia: U.S. Geological Survey Water-Resources Investigations Report 81-343, 62 p.
- Roybal, A.A., and others, 1983, Hydrology of area 60, Northern Great Plains and Rocky Mountain Coal Provinces, New Mexico, Colorado, Utah, and Arizona: U.S. Geological Survey Open-File Report 83-203, 80 p.
- Schiner, G.R., and Kimmel, J.J., 1976, Geology and ground-water resources of northern Mercer County, Pennsylvania; 4th Ser., Pennsylvania Geological Survey, Water Resource Report 33, 47 p.
- Schweinfurth, S.P., 1967, Geologic map of the California Quadrangle, Washington and Fayette Counties, Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map GQ-648, scale 1:24,000.
- _____1975, Geologic map of the West Middletown Quadrangle, and part of the Bethany Quadrangle, Washington County, Pennsylvania: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-871, scale 1:24,000.
- _____1976, Geologic map of the Avella Quadrangle and part of the Steubenville East Quadrangle, Washington County, Pennsylvania: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-908, scale 1:24,000.
- Searcy, J.K., 1959, Flow-duration curves, manual of hydrology; Part 2. Lowflow techniques: U.S. Geological Survey Water-Supply Paper 1542-A, 33 p.
- Shaw, E.W., and Munn, M.J., 1911, Description of the Burgettstown and Carnegie Quadrangles, Allegheny, Beaver, and Washington Counties, Pa.: U.S. Geological Survey Geologic Atlas of the U.S., folio 177, 16 p.
- Skema, V.W., compiler, 1987, Coal resources of Washington County, Pennsylvania-Part 1, coal crop lines, mined-out areas, and structure contours, Pennsylvania Geological Survey, 4th Ser., Mineral Resources Report 93, 96 p.

- Socolow, A.A., Berg, T.M., Glover, A.D., Dodge, C.H., Schasse, H.W., Shaulis, J.R., Skema, V.W., and Blust, S., 1980, Coal resources of Pennsylvania: Pennsylvania Geological Survey, 4th Ser., Information Circular 88, 49 p.
- Stevenson, J.J., 1876, Report of progress in the Greene and Washington district of the bituminous coal fields of western Pennsylvania: 2nd Ser., Pennsylvania Geological Survey, 2nd Survey Report K, 419 p.
- Stoner, J.D., 1983, Probable hydrologic effects of subsurface mining: Ground Water Monitoring Review, v. 3, no. 1, p. 126-137.
- Stoner, J.D., Williams, D.R., Buckwalter, T.F., Felbinger, J.K., and Pattison, K.L., 1987, Water resources and the effects of coal mining, Greene County, Pennsylvania: Pennsylvania Geological Survey, 4th Ser., Water Resource Report 63.
- Swanson, V.E., and Berryhill, H.L., 1964, Geology of the Washington East Quadrangle, Pennsylvania: U.S. Geological Survey Geologic Quadrangle Map GQ-334, scale 1:24,000.
- Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of a well using ground-water storage: American Geophysical Union Transactions, v. 16, p. 519-524.
- Toler, L.G., 1982, Some chemical characteristics of mine drainage in Illinois: U.S. Geological Survey Water-Supply Paper 1078, 47 p.
- U.S. Department of Agriculture, Soil Conservation Service, 1969, Field Office Technical Guide, Section 4, 6 p.
- U.S. Department of Commerce, Environmental Data Service, 1949-85, Climatological Data, Pennsylvania (annual summary).
- U.S. Environmental Protection Agency, 1975, Manual of individual water supply systems, Office of Water Programs, Water Supply Division, USEPA-430/9-74-007, 155 p.
 - ____1983, Drinking Water Standards (Information from code of Federal Regulations #40, 1983, parts 141.11 and 143.3).
- U.S. Geological Survey, 1979-85, Water resources data for Pennsylvania, wwater years 1979-85--volume 3: U.S. Geological Survey Water-Data Reports PA-79-3 to PA-85-3 (published annually).
- Wyrick, G.C., and Borchers, J.W., 1981, Hydrologic effects of stress-relief fracturing in an Appalachian Valley: U.S. Geological Survey Water-Supply Paper 2177, 51 p.

APPENDIX A.--DETAILS OF HYPOTHETICAL UNMINED-BASIN MODEL

Flow Model and Results

Simulation of an Unmined Basin

A three-dimensional finite difference computer flow model (McDonald and Harbaugh, 1984) was utilized to simulate general premining ground-water flow and to estimate the hydrologic effects of a hypothetical coal-mine operation. The model is used to calculate the hydraulic head in an aquifer at specified locations under steady-state-flow conditions. This is achieved by solving a series of steady-state differential equations of ground-water flow, which require that the hydraulic properties, boundaries, and inflow and outflow be defined for the modeled area.

On the basis of model results in adjacent Greene County (Stoner, 1983), steady-state ground-water flow can be simulated within the fractured sedimentary rock aquifer systems. This model contains known hydrologic factors and estimates of poorly known factors. The model is calibrated by comparing the output of the simulated flow system with the known hydrologic data of the real ground-water flow system (such as hydraulic head, mine inflow, stream discharge, etc.). Input characteristics to the model (such as vertical and horizontal hydraulic conductivity) are then adjusted until a similitude is achieved: When this is achieved, the model is considered calibrated and can be used to simulate hypothetical stresses on the aquifer systems.

This calibrated model is known as the "hypothetical unmined-basin model," because of (1) the lack of sufficient and comprehensive hydrologic data, (2) the large variability of the data collected, and (3) the limited data base describing the regional flow system. If more data were available, model calibration could have been improved, and model reliability would have been enhanced.

Known Hydrologic Variables

The known hydrologic variables used to calibrate and evaluate the model include water levels from domestic wells (hydraulic head), vertical hydraulic gradients, aquifer properties, and base-flow discharge to the stream. Water levels from 40 domestic wells (35 to 150 ft deep) in the basin were used to calibrate the model. Well inventory in the county showed that most head fluctuations were less than 20 ft, although some heads fluctuated as much as 50 ft because of ground-water pumpage and natural discharge and recharge.

Few measured heads are available for deep aquifers in Washington County. Table Al shows the water-level and well-bottom altitudes for seven deep wells in Washington and Greene Counties. Water well WS-825 is the only deep well within Brush Run basin. Data reported by Piper (1933) were used to evaluate computer-generated heads in the lower layers of the model. The condition of the wells and the accuracy of the water-level measurements given by Piper (1933) are not known; therefore, these data were used only as estimates of head in deep aquifers in the county. Deep and shallow domestic wells located in close proximity were used to determine a range of vertical gradients. The gradient was calculated by dividing the difference between water-level altitudes by the difference between tops of well-opening altitudes. The results indicate the following ranges of vertical head gradients by general topographic setting: (1) 0.07 to 0.73 ft/ft (feet per foot) beneath hilltops (from six well pairs); (2) 0.55 to -0.04 ft/ft beneath hillside wells (from eight well pairs); (3) 0.56 to -0.14 ft/ft beneath upland valleys (from three well pairs); (4) 0.05 to -0.79 ft/ft beneath valleys (from three well pairs). A positive gradient indicates downward ground-water flow; negative gradient indicates upward ground-water flow.

Aquifer tests done in Washington County show that the hydraulic conductivity of aquifers in the same topographic setting and in the upper 175 ft of bedrock can differ by as much as three orders of magnitude (see table 7). The hydraulic conductivity of aquifers in Greene County (Stoner and others, 1987) have a similar variation. This wide variation in hydraulic conductivity is attributed to the variation in size and number of fractures in the rocks tested. Therefore, results from the aquifer tests can only be used as a guide in selecting hydraulic-conductivity values for the model.

Data from five seepage runs were used to evaluate model results. For a seepage run, stream discharge was measured at 17 stations in the basin when ground water was the dominant source of streamflow. These data were checked against the model streamflow output for model calibration and reliability. The stream discharge measured during a seepage run on April 23, 1985, was deemed representative of the runs during high base flow and was used for calibration.

Details of the Model

Introduction

The 10.2-mi² Brush Run basin was divided into 291 cells, each 1,000 ft by 1,000 ft in size (fig. Al). This grid size provides a fair representation of actual conditions. However, in some places the topographic relief was somewhat subdued by the model because of the large grid size.

The head of the local ground-water system generally parallels the shape of topography and is simulated by layers 1 and 2 of the model. Figures A2 and A3 show geologic sections A-A' and B-B', respectively, across Brush Run basin and how the computer model simulates the same sections. The unsaturated zone above layer 1 is not simulated in the model. Layer 1 and the top of layer 2 of the model cut across the Washington, Waynesburg, Uniontown, and Pittsburgh Formations, and follow the topography. The bottom of layer 2 follows the bedding of the Pittsburgh Formation. Layer 1 is simulated as an unconfined aquifer, whereas layer 2 is a confined aquifer.

The ground-water flow of the regional (deep) ground-water system is assumed to follow the bedding of the formations, from the major watershed divides to the major river systems, and is simulated by the confined aquifers of layers 3 and 4 in the model (figs. A2 and A3). Layers 3 and 4 simulate the lower 30 ft of the Pittsburgh Formation and the upper 600 ft of the Conemaugh Group.

HILLTOP CELL, horizontal hydraulic conductivity = 0.6 feet per day HILLSIDE CELL, horizontal hydraulic conductivity = 0.4 feet per day VALLEY CELL, horizontal hydraulic conductivity = 2.0 feet per day DRAIN (stream)

Figure Al.--Discretization of the Brush Run basin in layer 1 of the unmined-basin model. (Cross section A-A' and B-B' are shown in figures A2 and A3.)

Greene Formation-Zero to 60 feet thick, alternating sandstone, siltstone, Pg limestone and mudstone with impure coal near base

- Pw Washington Formation-Average 170 feet thick, alternating shale, sandstone and limestone with basal coal
- PPw Waynesburg Formation-Average 115 feet thick, alternating shale, siltstone, sandstone and minor limestone with basal coal
- Pu Uniontown Formation-Average 60 feet thick, alternating shale, siltstone, sandstone and limestone with discontinous basal coal
- PP Pittsburgh Formation- Average 230 feet thick, alternating shale, limestone, and sandstone with basal Pittsburgh coal bed
- Pc Conemaugh Group-Upper 600 feet shown, alternating shale, sandstone and limestone

COMPUTER MODEL

Local ground-water system	UNSATURATED ZONE
	LAYER 1-About 70 feet thick, follows topography closely
	LAYER 2-Varies in thickness from about 135 to 400 feet thick, top of layer follows topography, bottom follows geologic structure
Regional ground-water system	LAYER 3-Fifty feet thick, contains lower 30 feet of Pittsburgh Formation and upper 20 feet of Conemaugh Group, follows geologic structure
	LAYER 4-Six hundred feet thick, simulates part of the Conemaugh Group, follows geologic structure
	 Base of ground-water model
	 Geologic contact
	 Pittsburgh coal bed (basal unit of Pittsburgh Formation)

Figure A2.--Geologic section A-A' of Brush Run basin showing bedrock geology and computer-model simulation, (see figure Al for location of cross section).

Greene Formation-Zero to 60 feet thick, alternating sandstone, siltstone, Pg limestone and mudstone with impure coal near base

- Pw Washington Formation-Average 170 feet thick, alternating shale, sandstone and limestone with basal coal
- PTW Waynesburg Formation-Average 115 feet thick, alternating shale, siltstone, sandstone and minor limestone with basal coal
- Pu Uniontown Formation-Average 60 feet thick, alternating shale, siltstone, sandstone and limestone with discontinous basal coal
- Pp Pittsburgh Formation- Average 230 feet thick, alternating shale, limestone, and sandstone with basal Pittsburgh coal bed
- Pc Conemaugh Group-Upper 600 feet shown, alternating shale, sandstone and limestone

COMPUTER MODEL

d-vate		UNSATURATED ZONE
groun ystem		LAYER 1-About 70 feet thick, follows topography closely
Local	E	LAYER 2-Varies in thickness from about 135 to 400 feet thick, top of layer follows topography, bottom follows geologic structure
und-water em		LAYER 3-Fifty feet thick, contains lower 30 feet of Pittsburgh Formation and upper 20 feet of Conemaugh Group, follows geologic structure
ional gro		LAYER 4-Six hundred feet thick, simulates part of the Conemaugh Group, follows geologic structure
Reg		Base of ground-water model
		Geologic contact
		Pittsburgh coal bed (basal unit of Pittsburgh Formation)

Figure A3.--Geologic section B-B' of Brush Run basin showing bedrock geology and computer-model simulation, (see figure Al for location of cross section).

Boundaries of the model

The boundary conditions used for the layers in the model are important in simulation of this flow system and interpreting model results; therefore, the boundaries for each layer are discussed. The uppermost surface of the model is assumed to be a free-surface and a specified flux boundary (fig. A4). The free-surface boundary represents the water table. Flux is the volume of fluid per unit time crossing a unit cross-sectional surface area. In this case, the flux across the uppermost surface is considered uniform in space and constant with time and is, therefore, a specified flux boundary. The effects of topography, land use, and so forth, on recharge rates to the unconfined aquifer were not considered in the model. Layer 1 of the model represents an unconfined aquifer 80 to 110 ft thick that follows a subdued topography. Well inventory data suggest that depth to ground water on hilltops is about 40 ft, on hillsides is about 20 ft, and in the valleys is about 10 ft. The top of layer 1, as generated by the computer model, generally follows the water table surface described by the well inventory.

It is assumed that the local ground-water system is strongly influenced by the drainage basin divides while the regional ground-water system is controlled by geology. Therefore, the lateral boundary for the local groundwater system is located at the drainage divide of the Brush Run basin and is assumed to be a no-flow boundary (fig. A4). At the edge of the basin groundwater flow is assumed vertical, and therefore, no ground water flows across the basin divide. The basin divide is, therefore, a no-flow boundary.

The altitude of the bottom of layer 1 (also equal to the top of layer 2) was determined from a topographic map. An average land-surface altitude for each cell was determined from a 7 1/2-minute U.S. Geological Survey topographic map. The bottom of layer 1 was determined by subtracting the estimated depth to water (according to topographic setting) and thickness of layer 1 (70 ft) from the average land-surface elevation for each cell. Therefore, the altitude of the bottom of layer 1 was determined by subtracting from the land-surface elevation: 110 ft (40 + 70) for hilltop cells, 90 ft (20 + 70) for hillside cells, and 80 ft (10 + 70) for valley cells.

The boundaries of the bottom of layer 2 and of layers 3 and 4 follow geologic structure. The bottom of layer 2 is equal to the top of layer 3. The thickness, in feet, of each cell in layer 2 is shown in figure A5. Layer 3 represents the bottom 30 ft of the Pittsburgh Formation and the upper 20 ft of the Conemaugh Group. Therefore, the Pittsburgh coal bed is near the center of layer 3. Layer 4 simulates 600 ft of the Conemaugh Group. The upper boundary of layer 4 is equal to the bottom of layer 3.

The lowermost boundary of the modeled basin is assumed to be a no-flow boundary (fig. A4). The base of the model lies 900 to 1,200 ft below the land surface. The model shows that less than 0.02 percent of the total groundwater recharge enters the lowest layer of the model (layer 4).

Head-dependent flux boundaries are used to simulate ground-water flow in the regional flow system (layers 3 and 4) (fig. A4). The direction and amount of flux across a head-dependent boundary is contingent on, and proportional to, the head difference across the boundary. The regional flow system

SPECIFIED FLUX BOUNDARY

Figure A4.--Boundary conditions for the unmined-basin model.

LOCATION OF CROSS SECTION

CELL-Number is thickness of layer, in feet

Figure A5.--Thickness of layer 2 in each cell of unmined-basin model.
encompasses those aquifers that carry most of ground-water flow between basins. Ground water in this deep system is thought to flow laterally along the rock layers from areas of recharge to discharge areas. Therefore, the direction of ground-water movement in these layers is dependent on the groundwater head.

The head-dependent boundaries (fig. A6) on the eastern side of the basin related to the cropping out of the Pittsburgh Formation and Conemaugh Group. The outcrops of the formations may be areas of recharge or discharge, depending on the head difference between the Brush Run basin and the elevation of the outcrop. For layer 3, the head-dependent flux boundary on the eastern side of the basin is related to outcropping of the Pittsburgh Formation, located about 5 mi from the Brush Run basin at an elevation of 1,100 ft above sea level. The horizontal hydraulic conductivity of the rocks between the outcrop and the basin was estimated to be 0.01 ft/d to account for the increased permeability of coal near the land surface. The head-dependent flux boundaries (fig. A6) on the eastern side of layer 4 of the model are based on the cropping out of the Conemaugh Group. The Conemaugh Group crops out about 6 mi to the east at an elevation of 1,000 ft above sea level. The horizontal hydraulic conductivity of the rocks between the basin and the outcrop was estimated to be 0.0003 ft/d and is based on data and a model published by Stoner and others (1987).

The head-dependent flux boundaries for the regional flow system (layers 3 and 4) that are on the western side of the basin are related to the Ohio River Valley. The Ohio River is the area of discharge for the regional flow system. The Ohio River is about 13 mi to the west of Brush Run basin at an elevation of 650 ft. The horizontal hydraulic conductivity of the rocks between the basin and the Ohio River for layer 3 was estimated to be 0.01 ft/d to account for the permeability of the Pittsburgh coal bed. The horizontal hydraulic conductivity of layer 4 was estimated to be 0.0005 ft/d. A no-flow boundary exists where a head-dependent boundary is not present, such as on the northern and southern sides of the model, where regional flow is in easterly and westerly directions.

Recharge

In a steady-state condition, the average annual ground-water discharge is equal to the average annual ground-water recharge to the basin. Therefore, the stream hydrograph from Brush Run was separated into baseflow and runoff (using a modified computer program published by Pettyjohn and Henning, 1979) for 2 typical years to determine the amount of ground-water contribution. An average of the computed ground-water discharges of these 2 years (8.5 in/yr) was used as recharge and was evenly distributed over layer 1 of the model.

Figure A6.--Lateral boundaries for layers 3 and 4 of the unmined-basin model.

Streams (drains)

Streams of the Brush Run basin are represented in the model as drains because almost all seepage-run data showed that streams are gaining water (aquifers are discharging ground water into the streams). The hydraulic conductivity of the stream-aquifer interface controls the amount of water flowing into the stream (drain)¹. The hydraulic conductivity of the interface represents the flow restriction caused by the vertical hydraulic conductivity in layer 1, converging flow lines, and vertical and horizontal hydraulic conductivity of the alluvial deposits. During model calibration, the hydraulic conductivity of the stream-aquifer interface was varied until the computer-generated heads matched the measured heads and until seepages were matched.

Hydraulic conductivity

Hydraulic conductivity of the bedrock aquifers represented in the model is assumed to be dominantly caused by stress-relief fractures. The horizontal hydraulic conductivity is assumed to decrease from valley to hilltops and with increasing depth. The vertical hydraulic conductivity also is assumed to decrease with depth because of the decrease in the number of vertical fractures with depth. In the deep-aquifer system, this would cause ground water to flow mostly along horizontal bedding-plane fractures from recharge areas to discharge areas.

Horizontal hydraulic conductivity for layer 1 of the model was varied according to the topographic setting (fig. A7). The cells in the Brush Run basin were classified by topographic setting as hilltop, hillside, or valley. Horizontal hydraulic conductivities were varied during model calibration until the computer-generated heads matched measured heads. The overall match was best when hilltop cells were assigned a horizontal hydraulic conductivity of 0.6 ft/d, hillside cells a hydraulic conductivity of 0.4 ft/d, and valley cells a hydraulic conductivity of 2.0 ft/d.

Aquifer test results indicate that horizontal hydraulic conductivity decreases from valley sites (2.0 ft/d) to hillside sites (1.0 ft/d) to hilltop sites (0.6 ft/d). However, because ground-water of the hillside cells must flow across the bedding planes (fig. A7), a reduced horizontal hydraulic conductivity of 0.4 ft/d was used, and this provided the best overall match with the measured heads.

The hydraulic conductivity for cells in layers 2, 3, and 4 of the model depends on the depth from the top of layer 1 and the topographic setting above the cell. The horizontal hydraulic conductivity decreases with depth because of the decrease in number of fractures with depth. The best overall fit of the model was achieved when the values for horizontal hydraulic conductivity of layer 1 were decreased at a rate of one order of magnitude per 175 ft of depth for the three topographic settings (fig. A8). A minimum hydraulic conductivity of 5 X 10⁻⁶ ft/d was used for all topographic settings.

¹The DRAIN subroutine, not the RIVER subroutine, was used in the model of McDonald and Harbaugh, 1984.

VALLEY CELL

EXPLANATION

- K_h HORIZONTAL HYDRAULIC CONDUCTIVITY
- Kang HYDRAULIC CONDUCTIVITY AT AN ANGLE ALONG FLOW PATH, FOR HILLSIDE CELLS

 \bigtriangledown water level in the cell

Figure A7.--Variation in hydraulic conductivity with topography and direction of flow for hillside cells.

Figure A8.--Curves used to determine horizontal hydraulic conductivity of cells in layers 2, 3, and 4 of the unmined-basin model, on the basis of depth from the top of layer 1 and the cell location (under hilltop, hillside, valley).

The depth from land surface to the center of the cell and the relation between depth and K (fig. A8) was used to determine the horizontal hydraulic conductivity. Each cell represents a multiaquifer system with decreasing horizontal hydraulic conductivity with depth. For modeling purposes, this system can be replaced by a single aquifer with an equivalent horizontal hydraulic conductivity. This equivalent hydraulic conductivity is approximately equal to the hydraulic conductivity calculated for the center of the cell.

The transmissivity for the confined aquifers represented in layers 2, 3, and 4 was calculated by multiplying horizontal hydraulic conductivity by thickness of the cell. The altitude of the top of layer 2 is variable according to topography, but its bottom follows geologic structure. Therefore, thickness of layer 2 depends on topography and structure, as can be seen in figures A2 and A3. The thickness of layer 3 is a constant 50 ft, and the thickness of layer 4 is 600 ft.

Vertical anisotropy

The anisotropy in the vertical direction, which is defined as the ratio of the horizontal hydraulic conductivity (K_h) to vertical hydraulic conductivity (K_h) , increases with depth. The magnitude of the anisotropy depends on the number of vertical fractures, interconnection between fractures, lithology, and stratigraphy. The anisotropies that gave the best overall model fit were 40 for layer 1, 125 for layer 2, 150 for layer 3, and 200 for layer 4. The anisotropy for layer 1 is low because of the great number of vertical fractures found in near-surface rocks, as evidenced by rises in water levels in shallow wells after a recharge event. The anisotropy for layers 2 and 4 is related to a thick sequence of interbedded sedimentary rocks. The anisotropy of layer 3 is controlled mainly by the thick underclay found under the Pittsburgh coal bed.

Model results

All measured water levels were within 70 ft of the computer-generated heads, and the model was able to match measured heads within 40 ft for 32 of the 40 wells measured in the basin (fig. A9). In some places, measured heads were higher than computer-generated heads because the grid size used in the model was too large to depict all the hilltops. This discretization problem caused some of the basins' steep topography to be overly subdued in the model. In other places, measured head may reflect recent pumpage and not actual water-table conditions, or measured head may reflect perched aquifers on hilltops, which the model was not designed to simulate.

Heads in the lower layers of the model were similar to the heads shown in table Al. When the measured head of well WS-825 was corrected for a depth equal to that of layer 2 using a vertical gradient of 0.3 ft/ft, the difference between the computer-generated head and calculated head was less than 15 ft. Computer-generated heads of layers 3 and 4 were similar to the heads reported by Piper (1933) as shown in table Al.

Figure A9.--Contoured surface of computer-generated head and measured water-level altitude of wells in the Brush Run basin in layer 1.

Vertical gradients of the model fell within the range of gradients determined from well inventory. Vertical gradients, determined from well inventory pairs, are reported in the section on known hydrologic variables. Model-simulated vertical gradients between layers 1 and 2 were within the range of gradients measured in the county.

Computer-generated discharges were within 10 percent of the measured discharges of the seepage run of April 23, 1985, except in the main valley. Alluvial deposits in the main valley of the basin can modify stream discharge by storing and releasing ground water. The model was not designed to simulate the storage and release of water in these alluvial deposits, which may explain why the modeled discharges for the main valley differ from measured discharges by more than 10 percent.

A ground-water budget of the model was done to quantify ground-water flow (fig. Al0). Recharge to layer 1 of the model was 100 percent of the ground water entering the basin. In layer 1, 100 percent of the total ground water was discharged to the streams. Ground-water flow into layer 2 from layer 1 was 3.9 percent of the total ground-water budget flow, and the same amount returned to layer 1. Only 0.1 percent of the ground water entered layer 3 from layer 2 and 0.1 percent returned to layer 2. In layer 3, less than 0.1 percent of the ground water left the basin across the head-dependent flux boundaries and discharged to the east at the outcrops of the Pittsburgh Formation and Conemaugh Group and to the west at the Ohio River Valley. Ground-water flow in layer 4 accounted for less than 0.1 percent of the water budget.

The budget shows that 96 percent of recharge to the ground-water system in the basin remains in the shallow aquifers of the basin, and the regional ground-water flow system has little or no effect on the shallow ground-water system. Less than 0.1 percent of ground-water recharge leaves the basin through the regional aquifer system.

Figures All to Al4 show a three-dimensional portrayal of the computergenerated head of each layer of the model. Also shown beneath the threedimensional surface is a contour map of the head.

The relief of the head in each layer of the model generally decreases with increasing depth and follows a subdued topography (except in layer 4, which follows the structural dip to the west). The greatest relief of head is seen in layer 1 (fig. All).

RECHARGE = 8.5 INCHES PER YEAR = 100 PERCENT

Figure AlO.--Budget analysis of ground-water flow in unmined-basin model.

WATER TABLE, LAYER 1

UNMINED-BASIN MODEL BRUSH RUN BASIN

Contour interval 100 feet

Figure All.--Computer-generated water table of the unconfined aquifer of layer 1 of the unmined-basin model.

Contour interval 50 feet

Figure Al2.--Computer-generated potentiometric surface of the confined aquifer of layer 2 of the unmined-basin model.

POTENTIOMETRIC SURFACE, LAYER 3 UNMINED-BASIN MODEL BRUSH RUN BASIN

Contour interval 50 feet

Figure Al3.--Computer-generated potentiometric surface of the confined aquifer of layer 3 of the unmined-basin model.

POTENTIOMETRIC SURFACE, LAYER 4 UNMINED-BASIN MODEL BRUSH RUN BASIN

Contour interval 50 feet

Figure Al4.--Computer-generated potentiometric surface of the confined aquifer of layer 4 of the unmined-basin model.

Sensitivity analysis

Input values of some aquifer characteristics were varied, one at a time, within a reasonable range, to determine their effect on model output. Values for recharge, drain-aquifer interface horizontal hydraulic conductivity, headdependent flux boundaries, vertical anisotropy aquifer, and hydraulic conductivity were increased and decreased from the values used in the unminedbasin model.

Recharge to the ground-water system of the basin was varied by intervals of 2.5 in/yr. When the recharge was reduced to 6 in/yr, the head in layer 1 dropped an average of 10 ft per cell. When recharge was increased to 11 in/yr, head in layer 1 increased an average of 6 ft per cell. Only about 4 percent more ground water reached layer 2 when recharge was increased, and the flow leaving layers 3 and 4 was unaffected. Vertical gradients between layers 1 and 2 remained about the same when recharge was varied.

The hydraulic conductivity of the stream-aquifer interface was increased and decreased by a factor of three from the postulated value of 0.05 ft/d. When the hydraulic conductivity was decreased, the average head in layer 1 of the model increased by about 35 ft per cell. When the hydraulic conductivity was increased, the head in layer 1 dropped by an average of 10 ft per cell. In both cases, the amount of ground water flowing between the layers of the model was changed by less than 1 percent of the total ground-water recharge.

When hydraulic conductivity for head-dependent flux boundaries in layers 3 and 4 was increased and decreased by one order of magnitude, the effect on the model was minimal. Head in layer 1 and vertical gradients between layers 1 and 2 were unaffected. When the hydraulic conductivity of the headdependent boundaries was increased, only an additional 0.1 percent of the total ground-water recharge entered layer 3, and ground water flowing out of the regional system was still less than 0.1 percent of total ground-water recharge. When the hydraulic conductivity was decreased, the ground-water flow budget remained essentially unchanged from the model results.

The anisotropy in the vertical direction (K_h/K_v) for all layers of the model was increased and decreased by a factor of two from the postulated values of 40 for layer 1, 125 for layer 2, 150 for layer 3, and 200 for layer 4. The average head in layer 1 was unaffected by the changes made in the anisotropy. When the anisotropy was reduced, the downward and upward vertical gradients between layers 1 and 2 were lower. An additional 2 percent of the ground-water recharge entered layer 2, but ground-water flow into layers 3 and 4 changed by less than 0.5 percent. When the anisotropy was increased, the gradients were steepened. Ground-water flow into layer 2 changed by about 1 percent of the total recharge, and flow into layers 3 and 4 changed by less than 0.5 percent.

The rate at which the horizontal hydraulic conductivity decreases with depth was varied for the sensitivity analysis. The value assigned to the hydraulic conductivity of the cells in layers 2, 3, and 4 depends on the topographic setting of the cell and on the depth from the top of layer 1 to the center of the cell. In the unmined-basin model, the value for horizontal hydraulic conductivity was assumed to decrease at a rate of one order of

magnitude per 175 ft of depth (fig. A8). For the sensitivity analysis, the slope of the lines, shown in figure A8, was changed so that hydraulic conductivity decreased with depth at the rate of one order of magnitude per 100 ft and then per 250 ft. The vertical hydraulic conductivity also has to change to maintain the value of anisotropy $(K_{\rm h}/K_{\rm y})$ for each layer.

When the rate at which the horizontal hydraulic conductivity decreases with depth was increased and decreased, head in layer 1 usually changed by less than 5 ft, but vertical gradients and ground-water flow budget were changed. Changing hydraulic conductivity of layers 2, 3, and 4 produced minimal change in the head of layer 1. When the hydraulic conductivity of cells in layers 2, 3, and 4 was decreased, the downward vertical gradient increased. Conversely, when the hydraulic conductivity of cells in the lower layers was increased, the downward vertical gradient decreased. If recharge is constant, vertical gradients are indicative of the aquifer's vertical hydraulic conductivity. A steep downward gradient is indicative of a low vertical hydraulic conductivity.

Hydrologic flow budget showed an additional 8.0 percent of the total recharge entered layer 2 of the model when hydraulic conductivity was increased. When hydraulic conductivity of the lower layer was reduced, only 0.6 percent of total recharge entered layer 2, and less than 0.1 percent entered layer 3. When hydraulic conductivity was increased, 8.6 percent of the recharge entered layer 2, 2.0 percent entered layer 3, and less than 0.1 percent entered layer 4.

In conclusion, sensitivity analysis showed that head in layer 1 is most sensitive to recharge and hydraulic conductivity of the stream-aquifer interface. Varying drain hydraulic conductivity by a factor of 3 caused head in layer 1 to change by -10 and +30 ft per cell. Varying recharge by 30 percent resulted in a change in head of -10 and +6 ft.

Figure A15 shows the maximum range of ground-water flow determined by the sensitivity analysis. Ground-water flow shown in figure A15 is described as percentages of the total ground-water recharge. The greatest range of ground-water flow resulted from increasing and decreasing the rate at which the horizontal hydraulic conductivities decreased with depth. Ground-water flow into layer 4 and the ground water leaving the basin by the head-dependent flux boundaries always remained less than 0.1 percent of the total recharge for all model runs in the sensitivity analysis.

Figure Al5.--Range of ground-water flow components used in the sensitivity analysis of the unmined-basin model.

Flow in a vertical fracture zone

The unmined-basin model was changed to simulate the effects of a vertical fracture system. Mine-inflow problems caused by flow to the mine through major fracture zones and lineaments have been well documented (Stoner, 1983). The angulate stream patterns that characterize the study area indicate the presence of fractures and the fracture control of some stream valleys.

Two different fracture systems were simulated to understand the nature and effect of vertical fracture zones on ground-water flow. The locations of the fracture systems in a section of the main Brush Run valley and part of a tributary are shown in figure Al6. The fracture system extends vertically throughout the entire thickness of the model and affects 23 cells in each layer of the model. The horizontal and vertical hydraulic conductivities were increased one order of magnitude in every cell that contained the fracture system.

The first fracture simulation resulted in vertical gradients in the fracture zone being almost zero, and in the fracture zone of layer 1, the horizontal gradients were flatter than prefracture conditions. Several heads in layer 1 in the valley cells, within the fracture system, increased as much as 13 ft, and other heads decreased as much as 20 ft. The head in the one hillside cell decreased 60 ft. Vertical gradients are upward in all cells within the fracture zone except in a few valley cells located farthest from the Brush Run Valley. Vertical upward gradients were reduced by as much as an order of magnitude to a minimum of -0.004 ft/ft.

The ground-water flow budget of the basin showed only small additional amounts of ground water entering the lower layers because of the fractures. Only an additional 1 percent of the total ground-water recharge entered layer 2 and then returned to layer 1. Ground-water flow to layers 3 and 4 was unaffected by the fracture system, and no additional water left through the head-dependent flux boundaries of layers 3 and 4.

In the second vertical-fracture simulation, the vertical hydraulic conductivity of only layers 1 and 2 of the model was increased one order of magnitude. The locations of the vertical fracture systems and the increases in horizontal hydraulic conductivity remained unchanged from the first simulation.

Results of model simulations of long-term steady state conditions in the second simulation were the same as results of the first simulation. Vertical gradients between layers 1 and 2 were essentially the same as those for the model of the previous fracture system. Head in layer 4 of the model in some cells varied by only 10 ft between the two simulations.

In summary, model results show that heads in valleys that are underlain by fractures differ from unfractured valleys. Water levels in small tributary valleys underlain by fractures may be deeper than those normally seen in a similar unfractured topographic setting, but water levels in major valleys underlain by fractures may be higher than those normally seen in similar unfractured topographic settings. Vertical upward gradients in the valley cells within the fracture zone generally are less than in unfractured areas. It would seem that slight upward gradients seen in some valley wells of Washington County may be explained by the presence of vertical fracture zones. The model results indicate that the presence of a few deep fractures within a basin does not change the water budget significantly from that of a basin with no deep fractures.

EXPLANATION

APPENDIX B.--DETAILS OF MINED-BASIN MODEL

Introduction

The unmined-basin model was altered to include an active underground coal mine. Coal mines in the county have employed two mining methods: room and pillar, and longwall. In the digital model, these two mining techniques were simulated differently according to the condition of the roof rock as a result of the mining methods. The standard room and pillar mining method necessitates that large blocks or pillars of coal remain for support and therefore, the roof rock is unfractured. The pillar recovery operations (of the room and pillar method) and the longwall panel extraction operation result in almost total removal of the coal. Coal removal allows the roof rock to collapse into the mined area.

The calibrated model can be used to simulate possible hydrologic effects of an underground coal mine on the aquifer systems. However, the hydraulic and geologic characteristics of the bedrock between the coal mine and the surface aquifers, which supply most potable ground water, largely determine the effects of the coal mine on the ground-water flow in the shallow aquifers. This bedrock information is lacking in the Brush Run basin. Also, changes in hydraulic conductivity of aquifers caused by roof collapse are not well understood and differ from area to area. Therefore, model results should not be used to predict the effects of underground coal mining in the Brush Run basin because much of the input data had to be estimated. Model results must be analyzed in light of the assumptions made, and because data for model calibration are sparse, the model is referred to as "the hypothetical minedbasin model."

In the mined-basin model, ground water entering the underground coal mine is assumed to be removed from the ground-water-flow system of the basin. The ground-water recharge rate to the mined basin also is assumed not to increase as a result of underground mining.

Steady-state runs were used in the mine simulation because of the lack and variability of transient data (changes of hydraulic head with time) with mining activity in the study area. Data necessary for transient runs are reported by Stoner (1983), Moebs and Barton (1985), Pennington and others (1984), and Booth (1986), but data differ with the situation and are site specific.

In some places, immediately after the mine collapses, water levels in wells over the mine will decline and then after a period of time (weeks to perhaps a few years) water levels may recover as the mine-subsidence fractures close by strata settlement; flow of plastic strata, such as fire clay; or deposition of clay and other sediment in the fractures. The model simulates steady-state water levels and is based on data collected in Daniels Run basin about 1 year after the roof collapsed.

The Brush Run and Daniels Run stream hydrographs were separated into the base flow and runoff components (using a modified computer program published by Pettyjohn and Henning, 1979) for the water years 1983-85, to determine and then to compare the amount of ground-water-recharge rates for each basin. The recharge computed for each basin varied somewhat with the method of hydrograph separation, but for water years 1983 and 1984, the annual recharge rates for the two basins were within 1/2 in. of each other. However, in 1985, the recharge in Brush Run basin was about 2 in. more than in the Daniels Run basin, even though both basins had the same total precipitation for the water The cause of this difference in the ground-water-recharge rates is year. unknown; seepage runs in the Daniels Run basin did not show loss of stream discharge to the mine in quantities large enough to explain the reduced recharge rate, and surface activities in either basin did not significantly change. Therefore, because the hydrograph separation showed the ground-waterrecharge rates for water years 1983-84 in each basin to be about the same, the recharge in the mined basin is assumed to be the same as the recharge in the unmined basin. The validity and effect of this and some of the other assumptions were tested in the sensitivity analysis of the mined model.

Mine Simulation

About 4 mi² of underground coal mines were simulated in layer 3 of the model (fig. B1). Layer 3 of the model contains the Pittsburgh coal bed, and the depth to coal in the mined-basin model is unchanged from that in the unmined-basin model. A mine was simulated by increasing the transmissivity of the mined cells by two orders of magnitude to about 125 ft²/d. The hydraulic head in an active underground mine is maintained at the altitude of the mine floor. This was simulated in the model by placing constant head nodes in the mined cells of layer 3 at the altitude of the base of the Pittsburgh coal bed.

The horizontal and vertical hydraulic conductivities were increased in cells above the collapsed mine area (fig. Bl). The vertical hydraulic conductivity between layers 2 and 3 of the model, in the area over the collapsed mine, was increased by one order of magnitude from the values used in the unmined-basin model. The horizontal hydraulic conductivity for cells over the collapsed mine area was increased by one order of magnitude in layer 2 and increased by a factor of five in layer 1.

Total mined area = 113 cells = 4 square miles

Results of Hypothetical Mined-Basin Model Simulation

On the basis of the previously outlined assumptions and model alterations, a new head for each layer was generated by the model under the hydrologic stress of a coal mine. Figure B2 shows the drawdown (difference) between the premining head and the head after mining in layer 1. Drawdown of head caused by mining averaged 6 ft for layer 1, but the drawdown for each cell differs with the distance to the mine. Drawdowns in those areas not lying directly over the mine are less than 5 ft, but drawdowns in areas directly over the mine range from 4 to 40 ft and average about 10 ft. In the uncollapsed area, topographic setting has a minimal effect on drawdowns, but drawdowns in hillside cells may be a few feet more than drawdowns in hilltop and valley cells. The largest drawdown is associated with the collapsed-mine area. Drawdowns for cells directly over the collapsed-mine area were as much as 40 ft on a hillside and as little as 12 ft in a valley. A threedimensional portrayal of the head in layer 1 of the mined-basin model is shown in figure B3, but because of the scale, there is little difference from the . premining portrayal in figure All.

The greatest drawdown is in the lower layers of the model. Figure B4 shows the head in layer 2 of the model. The greatest drawdown (about 200 ft) is in the collapsed-mine area. Drawdowns over the uncollapsed mine range from 100 to 200 ft and decrease with increasing distance from the collapsed-mine area. The drawdowns are smallest at the edge of the basin farthest from the mining.

The computer-generated heads in layers 3 and 4 of the model show considerable drawdown because of mining (figs. B5 and B6). The lowest head in layer 3 (fig. B5) is associated with the mine itself, and drawdowns are large within 3,000 ft of the mine. The head in layer 4 of the model (fig. B6) is depressed because of the mine, and the head over the entire layer is depressed about 150 ft compared with the premining head.

Vertical gradients between layers 1 and 2 that were upward in the unmined-basin model (in the valleys or upland draws) are downward in the mined-basin model if they are within 4,000 to 5,000 ft of the mined area.

The ground-water-flow budget for the postulated mined model shows that 26.7 percent of the total ground-water recharge enters the mine in layer 3 (fig. B7). The total ground water leaving layer 1 of the model amounts to 27.0 percent of the total recharge, and only 0.3 percent of the total recharge returns to layer 1. The mined model also shows that stream base flow in the basin is about 27 percent less than premining base flow (fig. Al5). The mine inflow is $0.44 \ (ft^3/s)/mi^2$ of area mined, which is common for mines in Washington County. Less than 0.1 percent of the recharge returns to layer 2 from layer 3, and less than 0.1 percent of the recharge enters layer 4 and returns to layer 3.

EXPLANATION

-20- LINE OF EQUAL WATER-LEVEL DRAWDOWN-interval 5 feet

Figure B2.--Drawdown configuration of water levels in layer 1 of the mined-basin model.

WATER TABLE, LAYER 1 MINED-BASIN MODEL BRUSH RUN BASIN

Contour interval 100 feet

Figure B3.--Computer-generated water table of the unconfined aquifer represented by layer 1 of the mined-basin model.

POTENTIOMETRIC SURFACE, LAYER 2 MINED-BASIN MODEL BRUSH RUN BASIN

Contour interval 100 feet

Figure B4.--Computer-generated potentiometric surface of the confined aquifer represented by layer 2 of the mined-basin model.

POTENTIOMETRIC SURFACE, LAYER 3 MINED-BASIN MODEL BRUSH RUN BASIN

Contour interval 100 feet

Figure B5.--Computer-generated potentiometric surface of the confined aquifer represented by layer 3 of the mined-basin model.

POTENTIOMETRIC SURFACE, LAYER 4 MINED-BASIN MODEL BRUSH RUN BASIN

Contour interval 50 feet

Figure B6.--Computer-generated potentiometric surface of the confined aquifer represented by layer 4 of the mined-basin model.

RECHARGE = 8.5 INCHES PER YEAR = 100 PERCENT

SPECIFIED FLUX BOUNDARY

Figure B7.--Ground-water-flow budget of the mined-basin model.

When the depth to the mine was increased by increasing the thickness of layer 2 by 200 ft to simulate conditions in the Daniels Run basin more closely, the model produced a hydrologic system similar to the one measured in the mined Daniels Run basin. The model showed only a small decrease from the premining basin discharge $[0.64 \text{ to } 0.62 \text{ (ft}^3/\text{s})/\text{mi}^2 \text{ of basin}]$ after mining. The decreased basin discharge is similar to that measured in the Daniels Run basin. The head in layer 1 remained unchanged except for the area within 1,000 ft of the collapsed mine area, where the head dropped by as much as 6 ft per cell. The drawdown is greatest directly over the collapsed area where drawdowns were as large as 23 ft on hillsides and 9 ft in valleys. In some valley cells, the head actually increased by 6 ft. These model-produced heads were compatible with data collected in the Daniels Run basin. Mine inflow in Daniels Run basin is about 0.15 $(ft^3/\text{s})/\text{mi}^2$ of area mined, and the model showed mine inflow of 0.05 $(ft^3/\text{s})/\text{mi}^2$.

In summary, the mined-basin model showed that if the defined hydrologic criteria and assumptions are true, the largest drawdowns of head would be over the collapsed-mine areas and stream base flow would be reduced 27 percent below premining base flow. Water levels in wells located over a collapsed-mine area may drop 12 to 40 ft, and declines in hillside wells probably would be the greatest. Water levels in wells located over an uncollapsed mine may decline about 10 ft. Drawdowns in wells not directly over the mine probably would be less than 5 ft. When the depth to the mine was increased by 200 ft to simulate conditions in the Daniels Run basin, the model showed that basin discharge [in cubic feet per second per square mile of basin], decline of head caused by mining, and mine inflow are similar to those measured in the Daniels Run basin. This simulated deep coal mine reduced stream base flow of the basin by only 3 percent, and the head in hillside domestic water wells over the collapsed mine may drop 13 to 23 ft.

Sensitivity Analysis

The values of some of the hydrologic characteristics within the mined basin and some of the boundary conditions were varied to determine how the changes would affect the ground-water system and the quantity of mine inflow. Variations in ground-water flow in mined areas may be caused by mine collapse, variation in depth to mining, natural hydrogeologic variation, type of land use, and drainage and recharge efficiency. The relative importance or sensitivity of each hydrologic characteristic can be determined by how greatly changing the values of each characteristic affects the ground-water-flow system.

The values for the hydrologic characteristics used in the mined-basinmodel were used as a standard in the sensitivity analysis, except that the horizontal and vertical hydraulic conductivity in layers 1 and 2 of the model were not increased to reflect a collapsed mine. Transmissivity was increased to about 125 ft³/d in mined cells of layer 3 (fig. B5), and in those same cells, constant-head nodes were placed at the altitude of the base of the Pittsburgh coal bed.

When the increase in the hydraulic conductivity from mine collapse was not simulated (fig. B8), the ground-water-flow budget for the basin varied by up to 4 percent of the total ground-water recharge from the mined-basin model, and the average drawdown of head in layer 1 was changed by less than 1 ft. Analysis of the ground-water-flow budget showed that 23.1 percent of the total recharge enters layer 2 from layer 1; 0.3 percent of this is returned to layer 1 (fig. B8). Ground water being discharged into the stream is 77.2 percent of the total recharge. The ground water flowing into the mine is 22.8 percent of the recharge, which is most of the water entering layer 3. Mine inflow is $0.37 (ft^3/s)/mi^2$ of area mined. Head-dependent boundaries in layer 3 removed less than 0.1 percent of recharge. Less than 0.1 percent of the recharge left head-dependent boundaries in layer 4 and less than 0.1 percent of the recharge enters layer 4 to return to layer 3. The head in layer 1 dropped by an average of about 5 ft per cell over the entire layer and the average drawdown for cells located over the mine was 9 ft. The large drawdowns in layer 1, which were associated with the mine collapse, were not seen in this simulation.

Recharge to layer 1 of the model was increased and decreased by 2.5 in/yr from the value of 8.5 in/yr. The change in recharge had only a small effect on the quantity of mine inflow, but a large effect on stream base flow. When the recharge was reduced, mine inflow was $0.36 (ft^3/s)/mi^2$ of mined area, and, when recharge was increased, mine inflow was increased only to $0.37 (ft^3/s)/mi^2$. When recharge was decreased, the average head in layer 1 dropped an additional 11 ft per cell, and when recharge was increased, the average head in layer 1 increased 6 ft per cell. The model shows that seasonal fluctuations of recharge would affect the head in domestic wells, but mostly would change the mine inflow. Furthermore, in some cases, mine-subsidence fractures in the unsaturated zone increase recharge rates to the surface aquifer (Hobba, 1981, p. 46); the additional recharge would explain the reduction in stream base flow and offset the drawdown of head in the surface aquifers.

The hydraulic conductivity of the stream bed was increased and decreased by a factor of three from the value of 0.05 ft/d used in the model. Stream bed hydraulic conductivity in the model is controlled by the anisotropy (K_h/K_v) of layer 1, converging flow to the stream, and the vertical and horizontal hydraulic conductivities of stream alluvium. The previous sensitivity analysis of the unmined-basin model determined that the value of the stream (drain) hydraulic conductivity has a big effect on the head in layer 1; therefore, only changes in mine inflow are reported. When the stream bed (drain) hydraulic conductivity was increased, mine inflow was 0.36 ft³/s)/mi² of area mined, and when the hydraulic conductivity was decreased, mine inflow increased to 0.41 (ft³/s)/mi². Therefore, variation of hydraulic conductivity and under swould affect the head in that system but would not drastically affect mine inflow.

The anisotropy in the vertical direction (K_h/K_v) for all layers of the postulated mined model was varied by a factor of two from the postulated values of 40 for layer 1, 125 for layer 2, 150 for layer 3, and 200 for layer 4. When the vertical anisotropy was changed, the horizontal hydraulic conductivity (K_h) is unchanged, and the vertical hydraulic conductivity (K_v) of the aquifers is varied by a factor of two. The increase in vertical

RECHARGE = 8.5 INCHES PER YEAR = 100 PERCENT SPECIFIED FLUX BOUNDARY

Figure B8.--Ground-water-flow budget of mined model used as a standard for the sensitivity analysis (no callapsed-mine area). hydraulic conductivity caused the mine inflow to increase to 0.69 $(ft^3/s)/mi^2$ of mined area and the head in layer 1 to drop by an average of 11 ft per cell. The decrease in vertical hydraulic conductivity caused the mine inflow to decrease to 0.20 $(ft^3/s)/mi^2$ of mined area and the head in layer 1 to drop an average of 2 ft per cell. Therefore, increasing the vertical hydraulic conductivity by a factor of four (from the low to high values) caused mine inflow to increase by almost a factor of four also.

The changes made in vertical anisotropy had a large effect on the groundwater-flow budget. When anisotropy was decreased, 42 percent of the groundwater recharge entered the mine and only 58 percent of the recharge was removed by the streams (drains). When anisotropy was increased, 12 percent of the recharge entered the mine and 88 percent was removed by the streams.

The horizontal hydraulic conductivity of layers 2, 3, and 4 was decreased and then increased for the sensitivity analysis. For the mined-basin model the horizontal hydraulic conductivity was assumed to decrease at a rate of one order of magnitude per 175 ft of depth. In the sensitivity analysis, the rate was changed to one order of magnitude per 100 and 250 ft of depth. The vertical hydraulic conductivity also had to be changed so that the vertical anisotropy (K₁/K₂) would remain unchanged. With constant anisotropy, the sensitivity of horizontal conductivity is related to the sensitivity of vertical conductivity. The vertical hydraulic conductivity values of the aquifers between the mine and the shallow aquifers determine how the shallow aquifers will respond to mining.

When the horizontal and vertical hydraulic conductivities of layers 2, 3, and 4 was decreased, the effects of the mine on the ground-water system were very small. The mine inflow was only $0.04 \ (ft^3/s)/mi^2$ of area mined, and the mine caused the head in layer 1 to drop by an average of less than 1 ft. The ground-water-flow budget showed 97.4 percent of the recharge left by the streams and only 2.6 percent of the recharge entered the mine in layer 3 of the model.

When the horizontal and vertical hydraulic conductivities of layers 2, 3, and 4 were increased, the effects of the mine on the ground-water system were substantial. Mine inflow became 0.8 $(ft^3/s)/mi^2$. The average head in layer 1 of the model dropped by an average of 14 ft per cell. The head in three cells in layer 1 of the model dropped below the bottom of layer 1, which caused the cells to go dry and altered model results. The ground-water-flow budget showed 50 percent of the recharge entering the mine and the remaining ground water being removed by the streams.

The lateral no-flow boundary in layer 2 of the model was changed to a constant-head boundary to simulate the possibility of ground water moving from the surrounding basins into the mined basin. Under the hydrologic stress of the underground coal mine, the lateral no-flow boundary for layer 1 is assumed to still be an adequate representation of the real system. However, ground water is now allowed to enter layer 2 from the lateral constant-head boundaries to simulate ground water moving in from surrounding basins. This constant-head boundary was placed at the altitude of premining heads. Ground water entering the mined basin from the constant-head boundaries amounted to

3.2 percent of the total ground-water recharge. The ground-water-flow budget did not change substantially. A little more of the total recharge (2.0 percent) stayed in layer 1. The sensitivity analysis showed that in this mine simulation, ground water moving from the surrounding basins into mined basins because of mining would be small and would not significantly change mine inflow. Mine inflow increased only from 0.37 to 0.38 (ft³/s)/mi² of area mined, and the head in layer 1 was changed only by an average of 1 ft per cell.

The horizontal hydraulic conductivity for the head-dependent boundaries in layers 3 and 4 was increased and then decreased by one order of magnitude. When these changes were made, mine inflow remained unchanged. Head in layer 1 differed by less than 1 ft, and the ground-water-flow budget differed by less than 0.1 percent of the total recharge. The model shows that regional groundwater-flow system has little effect on the ground water of the mined basin.

The depth to mining was tested in the sensitivity analysis. The thickness of layer 2 was increased by 200 ft to simulate the depth to mining in the Daniels Run basin. Changes had to be made in the vertical and horizontal hydraulic conductivities of layers 2, 3, and 4 to account for the increased depth. Mine inflow decreased from 0.37 to 0.05 $(ft^3/s)/mi^2$ of area mined, which is only 2.5 percent of the total ground-water recharge. The mine inflow at Daniels Run is about 0.15 $(ft^3/s)/mi^2$ of area mined, but this mine inflow includes areas of mine collapse. The head in layer 1 is reduced only by about 1 ft per cell, and the streams still remove almost 98 percent of the recharge to the system. Therefore, according to the sensitivity analysis, depth to mining is a very sensitive hydrogeologic criterion, and the greater the vertical distance between the mine and the surface aquifers, the smaller will be the effects of mining.

In summary, changes of values for some hydrologic characteristics of the shallow aquifers (such as recharge, stream drainage, and ground-water flow entering from neighboring basins) have little effect on the amount of mine inflow, but may affect the head in the shallow aquifers represented by layer 1 of the model.

Vertical hydraulic conductivity of the bedrock between the mine and shallow aquifers is a major factor influencing the amount of ground water entering the mine and the effects of the mine on the shallow ground-water system. Increasing the vertical hydraulic conductivity by a factor of four increased mine inflow by almost the same amount. A high vertical hydraulic conductivity may be caused by mine collapse or vertical fracture zones. Figure B9 shows the range of the ground-water flow budget determined in the sensitivity analysis. The greatest range of flow was produced when vertical anisotropy was varied by a factor of two from the assumed values and when the vertical and horizontal hydraulic conductivities were changed in layers 2, 3, and 4.

Changing the hydraulic conductivity of the regional flow system had almost no effect on mine inflow and the ground-water-flow budget of the basin.

The depth to a mine is a sensitive hydrologic variable. Increasing the depth to a mine by 200 ft decreased mine inflow by an order of magnitude.

RECHARGE = 8.5 INCHES PER YEAR = 100 PERCENT SPECIFIED FLUX BOUNDARY

Figure B9.--Range of ground-water-flow components used in the sensitivity analysis of the mined-basin model.

Effects of a Vertical Fracture Zone

The fracture simulations discussed in the section "Flow in a Vertical Fracture Zone" were tested in conjunction with an underground coal mine. Depth to coal and all hydrologic factors discussed in the previous section on flow in a fracture system also were used for this simulation. The initial stage of mining (room development, no pillar extraction) was simulated by placing constant head nodes in layer 3 at an altitude equal to the base of the Pittsburgh coal bed in cells delineated in figure Bl. Transmissivity in these same cells also was increased two orders of magnitude (average transmissivity about 125 ft^2/d).

The effect of vertical fractures on underground coal mining depends largely on the vertical hydraulic conductivity of the fracture system. When the horizontal and vertical hydraulic conductivities of cells in the vertical fracture system were increased 10 times, the effect of underground coal mining on heads in layer 1 was significant. Most of the cells in layer 1 within the fracture system went dry; this means the head in these cells fell below the bottom of layer 1.

When the vertical hydraulic conductivity between layers 2, 3, and 4 was not changed by the vertical fracture system, the effects of underground coal mining were not as great. The horizontal hydraulic conductivity of all cells in the fracture zone and only the vertical hydraulic conductivity from layer 1 to layer 2 for cells within the fracture system were increased 10 times. Fractured cells in layer 1 generally had drawdown of 10 to 15 ft from premining heads. Hilltop cells were the least affected (10 ft or less drawdown); hillside and valley cells generally had drawdown of 15 ft as far away as 4,000 ft from the fracture system. These vertical fractures caused mine inflow to increase from 0.37 to 0.41 (ft³/s)/mi² of area mined.

In summary, the effects of the fracture system on the local ground-water system depend on the vertical conductivity of the fracture system. If the vertical conductivity in a fracture zone is low, the limited effects of mining on the local ground-water system would be minimal, and the converse also would be true.

--, see . -
Local well number: The number that is assigned to identify the well. The prefix WS before the well number signifies that the well is located in Washington County.

Location map name: U.S. Geological Survey 7-1/2-minute topographic map.

- Use of water: C, commercial; D, dewatering; H, domestic; I, irrigation; N, industrial; P, public supply; R, recreation; S, stock; T, institutional; U, unused; Z, other.
- <u>Topographic setting</u>: C, stream channel; D, depression; F, flat; G, flood plain; H, hilltop; S, hillside; T, terrace; V, valley flat; W, upland draw.
- Hydrologeologic unit: 111ALVM, Quaternary alluvium; 112ALVM, Quaternary alluvium; 317GREN, Greene Formation; 317TNML, Ten Mile Coal; 317WSNG, Washington Formation; 317WSNGU, Washington Formation, upper member; 317WSNGM, Washington Formation, middle member; 317WSNGL, Washington Formation, lower member; 317WBRG, Waynesburg Formation; 317WBRGU, Waynesburg Formation, upper member; 317WBRGM, Waynesburg Formation, middle member; 317WBRGL, Waynesburg Formation, lower member; 321MNGL, Monongahela Group; 321UNNN, Uniontown Formation; 321PBRG, Pittsburgh Formation; 321PBRGU, Pittsburgh Formation, upper member; 321SCKL, Sewickley Member of Pittsburgh Formation; 321FSPT, Fishpot Member of Pittsburgh Formation; 321RDSN, Redstone Member of Pittsburgh Formation; 321PBRGL, Pittsburgh Formation, lower member; 321PBRGC, Pittsburgh Coal; 321CNMG, Conemaugh Formation; 321CSLM, Casselman Formation; 321MRGN, Morgantown Sandstone Member of Conemaugh Formation; 321GLNS, Glenshaw Formation; 321PBRGR, Pittsburgh Redbed.
- Lithology: CLSD, clay with some sand; COAL, coal; LMSN, limestone; SAND, sand; SDSL, sandstone and shale; SHLE, shale; SNDS, sandstone.
- Discharge: gal/min, gallons per minute.
- <u>Specific capacity</u>: [(gal/min)/ft], gallons per minute per foot of drawdown.

<u>Temperature</u>: deg C, degrees Celsius.

<u>Specific conductance</u>: μ S/cm, microsiemens per centimeter at 25 degrees Celsius.

USGS	Location	Township			Primary use	Торо-	Hydro-		Depth of
well	Latitude Longitude	or		Year	of	graphic	geologic	Lith-	well
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
Ws- 1	400220 0801219	Amwell	King, Floyd		Ħ	S	317WSNG		36
2	401042 0801539	Canton	Albert Packing Company		N	v	321MNGL		200
3	401048 0801554	Canton	O'Brien Steel Construction	1913	U	v	321MNGL		160
4	401043 0801612	Canton	Tygart Valley Glass	1935	N	v	321MNGL		135
5	401032 0801637	Canton	Findlay Clay Product	1920	N	v	321MNGL		80
6	400445 0795124	Long Branch	Moose Brewing Company	1900	N	v	321CNMG		145
7	400831 0795349	Charleroi	Corning Glass Company	1944	U	v	111ALVM	SAND	63
8	401144 0795221	Carroll	France Slag Company	1942	N	v	321CNMG		200
9	401311 0795759	Union	West Penn Power Company	1947	U	v	321CNMG		255
10	401546 0800017	Union	Finleyville Borough	1946	U	v	321CNMG		125
11	401547 0800022	Union	Finleyville Borough	1935	U	v	321CNMG		105
12	401944 0801104	Cecil	Village of Cecil	1940	P	S	321CNMG		250
13	400427 0801020	Amwell	Carnegie Natural Gas	1926	H	v	321MNGL		85
14	401023 0801512	Washington	Washington Ice Company	1905	U	. v	321MNGL		135
15	401625 0801610	Chartiers	Johnson Engr. & Mgmt. Co.	1930	P	v	321CNMG		90
16	400910 0801245	South Strabane	Red Schoolhouse	1926	н	S	317WSNG	LMSN	75
17	400757 0800920	South Strabane	Tanneyhill	1926	С	S	317GREN	SHLE	32
·18	400732 0800816	Amwell	Hootman, William	1926	R	С	321MNGL	SNDS	182
19	400428 0801018	Amwell	Carnegie Natural Gas	1926	N	С	321MNGL	LMSN	90
20	400423 0801026	Amwell	McCrory, G.E.		н	S	321MNGL		75
21	400435 0801025	Amwell	Clements, A.B.		Н		321MNGL	LMSN	75
22	400438 0801021	Amwell	Lewis, Clinton	1925	H	v	321MNGL		85
23	400419 0801218	Amwell	Keeney, Ralph H.	1925	H	H	317GREN		64
24	400325 0801233	Amwell	Wiley, Neal		Н	S	317WSNG	SHLE	40
25	400221 0801217	Amwell			H	S	317WSNG		90
26	400357 0800143	Deemston	Hill, W.B.	1925	с	S	317WSNG	SNDS	70
27	400707 0800014	Bentleyville	Hertzog, Herbert		H	S	321MNGL	LMSN	105
28	400701 0800003	Bentleyville	Hopkins, Mrs. Nettie		н	S	321MNGL	LMSN	125
29	401150 0800004	Nottingham	Nottingham Township		H	H	321MNGL	·	134
30	401141 0795954	Fallowfield	National Mining Company		U	S	321MNGL	LMSN	400
31	401805 0800932	Cecil	Deblasoi, Sam	1916	H	С	111ALVM	SAND	28
32	401742 0800941	Cecil	McConnell, Logan	1916	н	S	317WSNG		92
33	401742 0800941	Cecil	McConnell, Logan	1916	H	S	317WSNG		82
34	401813 0800702	Cecil	Ofsay, Sam	1916	H	Т	321MNGL		80
35	401815 0800722	Cecil	Quarturi, Joe		H	S	321MNGL		73
36	401806 0800655	Cecil	Simpson, A.F.	1916	H	v	321MNGL	LMSN	85
37	400329 0800118	Deemston	Nemacolin Country Club	1925	Н	Η	317WSNG		95
38	400218 0795558	Centerville	Grimes and Bakewell	1925	H	S	321MNGL		100
39	400220 0795435	Centerville	Butler, Charles	1925	H	S	321MNGL		100
40	400836 0795357	Charleroi	McBeth-Evans Glass Company	1925	N	v	111ALVM	SAND	
41	401512 0801805	Chartiers	Gretna Oil and Gas Company	1926	N	Ħ	321MNGL		107
42	401551 0801433	Chartiers	McCloy and Campbell	1926	N	v	321CNMG		123
43	401230 0801730	Canton	Wallace, J.H.		U	S	321CNMG		2,560
44	400710 0802548	Donegal			H	S	317WSNG		75
45	400703 0802548	Donegal	Williams	1924	H	S	317WSNG		100
46	400604 0800353	Cokeburg	Bethlehem Mines Corp.	1922	P	S	321MNGL		175
47	401945 0802434	Cross Creek			H	Н	317WSNG	LMSN	50
48	401820 0802300	Cross Creek	Kelly Brothers and Cooper	1909	H	S	321MNGL		157
49	401723 0802217	Cross Creek	Nosio Hall School	1921	Т	s	321MNGL		67

_

				Measured yield Field wa				ield wate	r qualit			
				Date	Reported	Specific	Dis-		Specific	pH		
с	asing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min)/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
4	40		34.00	08-17-36	÷-	1.0	3					1-Ws
			25.00	06-15-37	32						13.0	2
			100.00	06-15-37								3
			100.00	00-00-35	50							4
			60.00	01-01-20	8						·	5
			5.00	01-01-00	35							6.
52	8		14.00	03-01-44		5.1	200					7
			75.00	01-01-42								8
70	0		30.00	01-01-47		9.7	160					9
78	0		84.00	09-01-49		22	43					10
			30.00	05-01-50	50							11
												12
			7.00	07-01-50								13
			20.00	09-01-49	25							14
						.73	22				11.0	15
46	6		9.00	01-01-26								16
												17
16	6		13.00	00-00-26		. 4	30	- -				18
			7.00	00-00-26							11.0	19
40			40.00	00-00-26								20
												21
74	6								·			22
			50.00	00-00-25				09-28-26	370		11.0	2 3
												24
·												25
22	6		5.00	01-01-25								2 6
56	6		85.00	09-25-26								27
50	6											28
					`							2 9
400	1											30
								09-16-26	368		11.0	31
		32/ 40/ 55			1							32
		35/ 36/ 56			10							3 3
			30.00	09-16-26	<1							34
			50.00	09-16-26								35
							·					36
26	6		80.00	00-00-25								37
24	6	· · · · ·	80.00	01-01-25				·				38
28	6		85 00	01-01-25								39
					350							40
20	6		45 00	00-00-26	3			09-30-26	280		11 0	41
14	8		30 00	01-01-26	2							42
												43
												44
40	6		40 00	01-01-24								45
40	٥ ۲		145 00	01-01-24								46
	۵		UU				·					47
												48
20	-											49

Appendix	CRecord	of	wellsContinued
----------	---------	----	----------------

۰.

*

USGS	Location	Township			Primary use	Topo-	Hydro-		Depth of
well number	Latitude Longitude (degrees)	or borough	Owner	Year drilled	of water	graphic setting	geologic unit	Lith- ology	well (feet)
	401643 0802146	Cross Creek	Shaffer, Henry	1926	н	н	317WSNG		98
51	401900 0802530	Cross Creek	Dunbar, G.C.	1910	u U	F	317WSNGL		2.160
52	400655 0802410	Donegal	Claysville Borough		P	v	321MNGL		140
53	400437 0802132	East Finley	Pleasant Grove School		T	S	317WSNG	LMSN	148
54	400046 0802222	East Finley	Marshall School		Т	v	317GREN		
55	395926 0802416	East Finley	Newland School		т	s	317GREN	SNDS	.75
56	400225 0795356	Centerville	Elliot, Thomas	1923	s	Н	321MNGL		114
57	400143 0795435	Centerville	Nixon, A.J.	1923	н	S	317WBRGM		69
58	400200 0795250	Centerville	Forsythe Coal Company	1922	С	v	321CNMG		122
59	400745 0795716	Fallowfield	Haynan, Harrison	1918	H	Т	321MNGL	LMSN	70
60	400744 0795716	Fallowfield	Cole, J.S.	1918	н	Т	317WSNG		40
61	402745 0802931	Hanover	Manufacturers Light		N	v	321CNMG	SNDS	100
62	402708 0802625	Hanover	Fullerton, E.O.		н	F	321CNMG		60
63	402721 0802812	Hanover	Purdy School		т	H	321CNMG	SNDS	140
64	402810 0802633	Hanover	Fullerton, H.	1902	U	v	321CNMG	SNDS	
65	402545 0802645	Hanover	Bell, James		н	н	321MNGL		95
66	402552 0802733	Hanover	Steele, James F.		U	v	321CNMG		1,290
67	402450 0802830	Hanover	Thompson, R.A.	1918		S	321CNMG		1,790
69	402615 0802205	Hanover	McConnell Heirs	1925		S	321CNMG		1,000
70	401645 0802800	Independence	Schoolhouse of Avella	1924	H	v	321CNMG		100
71	402110 0802852	Jefferson	Dimit, Jacob	1909	H	S	321MNGL	LMSN	92
72	402115 0802825	Jefferson	Boles, McClellan J.	1925 •	H	S	321MNGL	LMSN	127
. 73	402035 0802032	Jefferson	Walker, Alexander	1919	U	v	321BNWD		2,300
74	401802 0801833	Mount Pleasant	Hickory Grade School	1914	I	S	321UNNN		126
75	401758 0801830	Mount Pleasant	Farmers National Bank	1926	с	F	321MNGL	LMSN	165
76	401705 0802124	Mount Pleasant	Stewart, Jim		н	·V	321MNGL	LMSN	75
77	401714 0801649	Mount Pleasant	Adams Brothers	1925	Н	v	321CNMG	LMSN	150
78	401745 0801920	Mount Pleasant	Donaldson		U	S	321UNNN		700
79	401240 0800345	Nottingham	McClure, Dr. & Margaret	1900		S	317WBRG		2,340
80	401115 0800320	Nottingham	Barr, J.	1921		Н	321UNNN		2,820
81	401705 0800650	Peters	Strange, William	1916	H	Т	317WSNG	SNDS	9 0
82	401655 0800630	Peters	Philips, A.C.	1916	н	S	317WSNG		61
83	401700 0800555	Peters	Brown, William F. Rev.	1915	H	G			78
84	401800 0800550	Peters	Denniston, Thomas	1916	Н	S	321MNGL		150
85	401650 0800425	Peters	Schnuth, George		H	S	321MNGL		85
86	401450 0800317	Peters	Venetia Schoolhouse		T	v	321CNMG		199
87	401640 0800210	Peters	Phillips, E.B.		U	v	321MNGL		2,730
90	401445 0800317	Peters	Bryant, Mary E. And M.M.	1921		v	321CNMG		3,630
91	402603 0802118	Hanover	West Penn Water Company		P	v	321CNMG	SNDS	9 0
92	402228 0802215	Smith	Beabout, S.G.	1926	Н	v	321CNMG	LMSN	60
93	402218 0801700	Robinson	Carnegie Coal Company	1919	P	v	321CNMG	SNDS	48
94	402645 0802035	Robinson	Moody	1925	U	F	321CNMG		1,000
95	402615 0802100	Robinson	Bigger	1925	U	S	321CNMG	SHLE	1,100
100	402251 0802347	Smith	Burgettstown Coal Company	1917	P	S	321CNMG		90
101	402330 0802315	Smith	Chastulik, Ciril	1920	H	Т	321CNMG		110
102	402155 0802420	Smith	Ptrucci, D.	1917	H	S	321CNMG		114
103	402255 0802433	Smith	Grnsbrg-Cnlsvlle C&C Co.		Ħ	S	321CNMG		70
104	402252 0802430	Smith	Grnsbrg-Cnlsvlle C&C Co.		H	v	321CNMG		145

. -

					M	easured yie	ld	F	ield wate	er qualit	y	
				Date	Reported	d Specific	Dis-		Specific	pН		
C	asing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
			90.00	01-01-26								50
		50/200										51
												52
			119.00	09-30-26								53
												54
												55
45	6		95.00	09-26-26								56
30	6		55.00	09-26-26								57
80	8		100.00	09-17-26								58
			57.00	09-23-26								59
			25.00	09-23-26		2.5	20					60
			5.00	09-22-26	110			09-22-26	280		10.0	61
			30.00	09-22-26								62
												63
												64
												65
43	8	35										66
1,305	7	55										67
					10							69
												70
25	6											71
41	8		75.00	09-21-26								72
		80										73
126	6		43.90	06-14-83				06-14-83	875	6.8	29	74
								08-11-83	8 80	7.1		
48	6		75.00	01-01-26								75
			30.00	09-30-26								76
												77
												78
		30/ 80/967/146										79
1,570	7	150/150										80
			30.00	01-01-16								81
					1							82
					2							83
		37/ 57			1							84
45	6	32/ 45/ 51/ 75			3							85
100	6		140.00	09-23-26								86
104	0	80/203/183										8/
1,360	7	80/620/700										90
14	0		7.00	00-00-00	120							91
38	6		36.00	09-00-26				09-22-26	880		10.0	92
40	6				22			09-22-26	330		10.0	93
												94
												300
								09-21-26	1,800		11.0	100
30	6											101
27	6											102
					10							103
												1/1/4

Appendix C.--Record of wells--Continued

•

					Primary				Denth
USGS	Location	Township			use	Topo-	Hvdra-		of
well	Latitude Longitude	or		Үеаг	of	graphic	geologic	Lith-	well
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
	/010/5_0002220	· · · · · · · · · · · · · · · · · · ·	4.J M				22101840		101
WS-105	401945 0802330	Cross Creek	Adams, Mrs.		H T	v	321CNMG		101
106	402320 0802140	Smith	Raccon Schoolhouse	1913	T 	5	321CNMG	SHLE	85
107	402332 0802202	Smith	P.C.C. and St.L. Railroad	1918	0	v	321CNMG		125
108	402302 0802449	Smith	Grnsbrg-Chisvile C&C Co.		2	5	321CNMG		220
109	402250 0802150	Smith	Shean Coal Company		ע ד	5	321CNMG	SNDS	110
110	402300 0802140	Smith		1026		v	321CNMG	2402	.50
111	402246 0802135	Smith	Ellas, Charles	1926	н 1	2	321CNMG		5U 750
112	402232 0802303	Smith	Laverick, Anton	1913	U C	п с	321CNMG	2402	209
113	402230 0802330	Smith	Remarkteter High School	1025	с т	ь с	3210000		0/
114	402341 0802331	Smith	Vaiantia Dominiak	1925	1 1	ы ч	3210NPG		110
115	402230 0802303	Smith	Pulsar Schoolbourg	1915	ц ц	n S	321MNGI		82
110	402214 0801942	Smith	Lewis Pop	1026	п ч	5	321MNGL	TMON	106
119	402212 0801907	Smith	American Zine and Company	1920	н Н	r F	321MNGI		112
110	402146 0802400	Smith	American Zine and Company	1914	11	r c	321MNGI	IMON	174
120	402130 0802325	Smith	Horowitz Adolph	1913	ਸ	v	321MNGI		58
121	402130 0802325	Smith	American Zine and Company	1915	N	s	321MNGI	TMON	80
121	402130 0802325	Smith	Krzeczowski M I	1914	н	v	321MNGI		76
122	402205 0802325	Smith	Fullam	1925	ਸ ਸ	• <	321MNGI	T MSN	60
120	402105 0802050	Smith			H	v	321CNMG	IMSN	150
127	401053 0800802	Somerset	Grange Hall	1925	н н	v	3176586	SNDS	52
128	400720 0801445	South Franklin	Vankirk Warren F	1925	н н	s	317GREN		90
129	400720 0801445	South Franklin	Vankirk Schoolbouse	1925	н Н	s	317GREN	IMSN	120
130	400720 0801250	South Strahane			н	н	317GREN		.100
131	400910 0801245	South Strabane	Lockwood Hugh	1926	н Н	s	317GREN	LMSN	103
132	400715 0795230	Fallowfield	Kittle		s	S	321CNMG		175
134	401507 0795507	Union	Equitable Gas Company		N	v	111ALVM	SAND	
135	401614 0800117	Union	Mineral Beach	1925	R	v	321CNMG		438
136	401614 0800117	Union	Mineral Beach	1925	R	S	321CNMG		790
137	401510 0800015	Union	H D Benn Garage		c	v	321CNMG		44
138	401507 0795525	Union	Equitable Gas Company		P	т	321CNMG		98
139	401507 0795507	Union	Equitable Gas Company		N	v	321CNMG	SHLE	94
140	401356 0795821	Union	Diamond Coal Company		N	v	321MNGL		153
141	401230 0795905	Union	Colson A K		H.	v	321CNMG		97
142	401030 0801610	Washington	Washington Ice Company		N	v	321MNGL	SNDS	200
143	401020 0801505	Washington	Washington Baking Company	1921	C	v	321MNGL		100
144	401010 0801510	Washington			U	v	321MNGL		365
145	400935 0801407	North Franklin	Casto, Earl	1925	н	S	317WSNG		105
146	400350 0800750	West Bethlehem	Schrontz, Geaman		н	c	317WSNG		140
147	400120 0800749	West Bethlehem	Franklin Schoolhouse		н	S	317WSNG		95
148	400105 0800615	West Bethlehem	Manaokoff, Angeline	1923	н	T	317WSNG	SNDS	87
149	400105 0800615	New Bethlehem	Fenosniff, Mrs. Annie	1923	н	Т	317WBRGM		126
150	400315 0795600	West Pike Run	Vesta Coal Company		н	v	111ALVM		30
151	400300 0800005	Centerville	Koches, Mike	1925	H	F	321MNGL	LMSN	95
152	400315 0795600	West Pike Run	Vesta Coal Company	1925	P	v	321CNMG	SNDS	141
153	400250 0795635	West Pike Run	Pepper, Taylor C.	1923	H	s	321CNMG	LMSN	156
155	400233 0802613	West Finley	U.S. Geological Survey	1971	U	v	317WSNG	SNDS	140
156	401735 0800507	Peters	Williams, W.H.		H	s	317WSNG		5 5

_

......

136

<u></u>					M	easured yie	əld	F	ield wate	r qualit	v	
				Date	Reporte	d Specific	Dis-	******	Specific	Hq		
с	asing	Depth to water-	Water	water	vield	capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(ga]/	$(\mathbf{ral})/$	(82)/	Date	tance	dard	aturo	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
				·					·····			
4.0	ć											105
40	0				,							105
			25.00	01-01-13	,							106
13	8											107
50	6											108
												109
												110
			30.00	01-01-26								111
83	6											112
					2			09-21-26	1,840		12.0	113
37	8											114
57	6											115
20	8											116
												117
												118
		_										119
												120
												121
24	6	**										122
			20.00	01-01-25								123
		·										124
20	6		35.00	01-01-25								127
			60.00	01-01-25								128
94	6		75.00	01-01-25								129
								09-25-26	330		11.0	130
25	6		41.00	01-01-26								131
			140.00	09-23-26								132
			10.00	09-17-26	125							134
100	8				65							135
300	8				35							136
					2			09-23-26	360		13.0	137
			50.00	09-17-26								138
55	6											139
												140
35	6											141
30	6		60.00	09-29-26	25			10-29-26	360		12.0	142
28	6		25.00	01-01-21								143
20			4.00	09-29-26								144
												145
												146
			25 00	09-28-26								147
27	6		45 00	01-01-23								148
27			45.00									149
10	4											150
10	0 2		80.00	01-01-25								151
22	0		100.00	01-01-25								152
40	6 F		75 00	01-01-25								153
127	2		73.00	04-01-71				07-01-71	510	8 7	12	155
19	6		30.00	00-01-/1		.12	2	08-33-83	700	0.2 7 0	12	L
								11-10-67	490	1.7	_	15/
								11-12-67	341	ర. చ		126

Appendix C.--Record of wells--Continued

					Primary				Depth
USGS	Location	Township			use	Topo-	Hydro-		of
well	Latitude Longitude	or		Year	of	graphic	geologic	Lith-	well
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
	401204 0902427	Papawall	Vasft Vassath				3176BDC1		
NS-1/0	401204 0802427	Hopewell	Rrait, Renneth			3 5	31/WBRGL		34
170	401203 0802239	Hopewell Homeseell	Boni, Dino		U 77	5	321UNNN		33
1/9	401202 0802301	Hopewall	Boni, Dino		n T	5	32 IUNNN		20
180	401335 0802134	Hopewell	Denning, Homer	1967	н.	2	31/WSNGM	SHLE	70
101	401313 0801958	Hopewell	Amos, James	1979	U 17	5	31/WBRGL		92
102	401312 0801938	North Rethleher	Wangattlan Jahr	1979	U 77	2 C	217680000		74
103	400633 0800724	North Bethlehem	Wonsettler, John	1960	U 17	- -	317WBRGU		33
104	400634 0800728	North Bethlehem	Wonsetter, John	1966	п ч	3 C	317WBRGU		62 51
100	400627 0800629	North Bethlehem	Wright, Bill	1924	<u>п</u>	5 5	317GREN		21
100	400639 0800632	North Bethlehem	Cowden, Mildred	1950	U 11	ъ 	317WSNGM		90
187	400640 0800632	North Bethlehem	Brady, Donald		U 17	n	317WSNGM		22
188	400434 0800558	North Bethlehem	Inearston, Norman		U 17	n	317WBRGU		16
189	400410 0800552	North Bethlehem	Hoffman, George	1960	U	Н	317WBRGU		32
190	400543 0800655	North Bethlehem	Bonczek, John		U	н	317WBRGU		25
193	401230 0801949	Canton	Armstrong, William	1973	н	S	317WBRGL		60
194	401231 0801951	Canton	Valduga, Donald	1970	н	S	317WBRGL		80
195	401232 0802018	Buffalo	Morrison, Robert	1972	D	S	321UNNN		100
196	401239 0802043	Hopewell	Bailey, Charles	1969	D	S	321PBRGU		120
197	401230 0802055	Hopewell				v	321UNNN		100
198	401212 0802240	Hopewell	Richmond, Bruce	1957	H	s	317WBRG		90
199	401211 0802241	Hopewell	Richmond, Bruce	1957	U	s	317WBRGL		38
200	401213 0802240	Hopewell	Richmond, Bruce		U	S	317WBRG		22
201	401245 0802232	Hopewell	Williams, Roger		ប	H			40
202	401231 0802228	Hopewell	Voytek, Joseph	1956	D	S	317WBRGL	 '	74
203	401228 0802225	Hopewell	Miller, Donald	1952	н	S	317WBRGL		60
204	401313 0802323	Hopewell	Smith, Thelma		U	S	317WBRG		90
205	401323 0802319	Hopewell	Smith, David	1979	U	W	317WBRGL		91
206	401330 0802321	Hopewell	Smith, David	1966	ប	W	321UNNN		97
208	400548 0800523	North Bethlehem			U	Н	317WSNGM		130
209	400613 0800635	North Bethlehem	Symdo, Andrew J.	1975	н	S	317WBRGU		110
210	400524 0800639	North Bethlehem	Gogoroncy George	1968	tī	v	317WBRGL		30
212	400517 0800427	North Bethlehem	Crumrine, Clark		u U	S	317GREN		68
214	400553 0800622	North Bethlehem	Kusch, Charles	1970	Ū	S	317WBRGU		18
216	401436 0802158	Hopewell	Taggart, Diane	1977	н	н	317WSNGM		130
217	401414 0802140	Hopewell	Johnson, Ray	1948	Н	S	317WBRGL		56
719	401332 0802140	Honewell	Waychoff I A	1047	ਸ	ਸ	317WSNGT		78
21 9	401328 0802138	Hopewell	Upper Buffalo Church	1979	P	H	317WSNGM		100

Appendix C.--Record of wells--Continued

					Me	asured vie	1d	I	ield wate	r qualit	v	
				Date	Reported	d Specific	Dis-	A	Specific	Hq		
с	asing	Depth to water-	Water	water	vield	capacity	charge		conduc-	(stan-	Temper-	USGS
Denth	Diameter	bearing zone(s)	level	level	(ga]/	(gal/	(ga)/	Date	tance	dard	aturo	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
			25 00	10-22-82	,							176
			13 60	10-22-82	· ·							178
			11 90	10-22-82								170
		16/ 27	43 00	10-22-82	. 15							190
			38 10	10-22-82				08-19-83	520	6 5	12	101
15	8		26 20	10 22 02	· ·	38	3	08-26-83	540	7.4	15	101
			13 00	10-25-82		.50						193
62	6		20 00	00-00-66								184
			44 70	10-25-82								185
20	6			10-25-82								186
55	48		52 00	10-25-82								187
				10-25-82								188
			30 50	10-25-82				08-30-84	555	74	13 5	189
			00.00	10 25 02				11-23-84	580	6.8	11	10)
								09-27-85	480	7 5	17	
			12 80	10-27-82								190
			50 20	11-01-82								193
			48 20	11-01-82								194
		75										195
					25						<u>.</u>	196
								08-22-84	640	75		197
	·		68 00	11-01-82	·			09-26-85	580	73	13 5	198
			24 40	11-01-82								199
19	24		18 30	11-01-82								200
40	30		21 60	11-01-82								201
			60 60	11-01-82				10-30-84	635	7 0	17 5	202
								04-23-85	660	7 2	18 0	
								09-26-85	655	7.3	19 0	
			27 00	11-01-82				04-23-85	685	7 2	14 0	203
			27.00	11 01 02				09-26-85	615	73	14 5	200
			33 20	11-01-82								204
14	6		6 36	11-02-82	·	1.8	2	08-24-83	580	7 2	15	205
14			29 60	11-02-92		.10						205
			60 50	11-02-82								200
			29 30	11-03-82				09-07-83	600	69	17 5	200
			27.00	11 00 02				11-23-84	640	7 0	16 0	20)
								04-30-85	600	7.0	14 5	
								09-27-85	650	73	17.5	
_												210
			57 90	11-02-02								210
			1/ 00	11-02-02								212
24		.5/ 90	45.00	11-03-82			 /	06-06-83	710	7 1	22 0	214
20	0	U0 \C#	10 20	06-06-02		.05	4	06-06-03	510	۰. ۲ ۲	22.0	210
			10.20	00-00-03				10-26-07	220	0.7 7 1	21.0	6 1/
								10-20-04	200	7.1 7.	20.0	
								04-30-83	540	7.4	16 0	
20	10							07-20-00	202 850	7.3 6 8	10.U 26 5	218
20	10			06-06-00				00-00-03	605	0.0 77	10.5	210
26	8	40	47.00	00-00-83		. 1	0	07-04-83		/./	17	417
						. 1	ь					

Appendix C.--Record of wells--Continued

•

139

					Primary				Depth
USGS	Location	Township			use	Торо-	Hydro-		· of
well	Latitude Longitude	or		Yea	r of	graphic	geologic	Lith-	well
number	(degrees)	borough	Owner	drill	ed water	setting	unit	ology	(feet)
	401329 0802141	Honewell	Tones Wray M		Ħ	н	317WBRCM		63
7221	401329 0802140	Hopewell	Vorbes Ed	1975	н Н	н Н	317WSNCI		88
222	401329 0802140	Hobewerr	VOINES, Ed	1973	п	п	SITASAGE		00
223	401300 0802241	Hopewell	Sinclair, William	1982	H	H	317WSNGL		120
224	401259 0802242	Hopewell	Miller, Juanita	1947	н	S	317WSNGL		100
225	401257 0802240	Hopewell	Merideth, William	1973	H	H	317WSNGL		-55
226	401258 0802241	Hopewell	Richmand, William	1963	· H	S	317WSNGL		40
227	401257 0802014	Hopewell	Minor, Charles		Н	S	317WBRGL		110
228	401256 0802012	Hopewell	Pallett, Alvin	1960	H	S	321UNNN		143
229	401255 0802011	Hopewell			H	. S	317WBRGL		100
230	401253 0802011	Hopewell	Karpen, Paul	1946	Н	S	317WBRGL		86
231	401251 0802015	Hopewell	Riggs, William	1967	Н	H	317WBRGU		75
232	401250 0802014	Hopewell	Ward, Henry S.	1959	·H	H	317WBRGL		93
233	401847 0801457	Mount Pleasant	Smith, Richard	1970	Н	H	321UNNN		100
234	401846 0801756	Mount Pleasant	Slates, Dorothy	1961	Н	H	321UNNN		120
235	401919 0801616	Mount Pleasant	Banro, Edward	1983	Н	S	321SCKL		130
236	401916 0802351	Mount Pleasant	Osbourne, Alvan	1982	Н	S	321UNNN		100
237	401704 0802123	Mount Pleasant	Zimmerman, Andrew			S	321SCKL		50
239	401706 0802131	Mount Pleasant	Carter, W.F.		U	S	321SCKL		40
240	401707 0802137	Cross Creek	Cowden, Andrew T.		H	V	321PBRGU		48
2 41	401705 0802148	Cross Creek	Rosko, David	1976	н	v	321SCKL		80
242	401705 0802146	Cross Creek	Malanosky, Frank	1976	P	v	321SCKL		110
243	401705 0802147	Cross Creek	Malanosky, Frank	1976	P	v	321SCKL		110
244	401710 0802152	Cross Creek	Hobbs, Robert L.		H	S	321SCKL		200
245	401712 0802155	Cross Creek	Conn, Wedron A.	1981		S	321SCKL		180
246	401713 0802155	Cross Creek	Conn, Jr., Wedron	1981	Ħ	S ·	321SCKL		120
21.9	401712 0802152	Cross Crook	Malanosky Frank	1977		5	32111NNN		120
240	401712 0802152	Cross Creek	Malanosky, Frank		н	5	3210MMN		
247	401712 0802152	Cross Creek	Malanosky, Flank	1977	ц ч	5	321 PBPCU		160
250	401710 0802154	Cross Creek	Malanosky, Flank	1977		5	3215077		110
251	401709 0802135	CIUSS CIEEK	Kearney, Luward	1977	4	5	JZISCKL		110
252	401713 0802153	Cross Creek	Smith, David	1977	Н	S	321UNNN		110
253	401709 0802151	Cross Creek	Conn, Jack		H	S	321SCKL		
254	401702 0802155	Cross Creek	Miller, Elva	1922		v	321SCKL		28
255	401704 0802154	Cross Creek	Schafer, James	1950	н	v	321SCKL		50
257	401705 0802152	Cross Creek	Ragan, James	1962	H	v	321SCKL		18
250	401701 0802157	Cross Creek	Wilson Joseph	1003	н	v	3215CKT		35
250	401702 0802137	Cross Creek	Fakula Julia	1960	н 1	s	3215CKL		60
220	401/02 0002200	Cross Crock	Marcott Popru	1051		5	3215CVI		42
260	401030 0802209	Cross Creek	marcott, denry	1921		2	JEISCHE		44

2

Appendix C.--Record of wells--Continued

...

.

					Me	asured vie	ld	I	ield wate	er qualit		
				Date	Reported	Specific	Dis-	**************************************	Specific	ъH		
с	asing	Depth to water-	Water	water	vield	capacity	charge		- conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
	•						-			-		
		46						06-06-83	800	7.0	22	221
			65.00	06-06-83				06-06-83	690	6.8	25	222
								09-02-83	825	7.4		
			21.40	06-06-83				06-06-83	795	7.1	17	223
			12.00	06-06-83				06-06-83	585	6.7	27	224
								06-06-83	590	6.6	20.5	225
								06-06-83	615	6.6	21.0	226 .
								06-08-83	560	7.5	20	227
								06-08-83	580	7.1	20.5	228
			47.70	06-08-83				06-08-83	5 05	7.3	21	229
					4			06-08-83	595	7.1	21	230
								06-08-83	625	6.8	20.5	231
22	6	23	23.00	04-00-59				06-08-83	680	7.0	17.5	232
			35.50	06-14-83				06-14-83	550	7.5	15.5	233
	[`]							06-14-83	440	7.0	15.5	234
130	6	45/120	69.70	06-14-83				06-14-83	525	7.7	19	235
			70.60	06-14-83	12			06-14-83	555	7.6	16.5	236
								06-15-83	630	7.3	19.5	237
			29.90	06-15-83								239
								06-15-83	4,500	7.7	18	240
								08-11-83	4,400	8.0	16.5	
			21.90	06-15-83				06-15-83	800	7	20.5	241
								08-22-84	800	6.8	26	
110	8		25.20	06-15-83	22							242
110	8		26.90	06-15-83	50							243
					5			06-15-83	825	7.1	18	244
								08-07-84	1,180	7.7	16.0	
								09-17-84	1,240	7.5	17.0	
							 _ '	04-17-85	730	6.9	13	
								09-12-85	1,500	7.5	14.0	
												245
			39.70	06-15-83				06-15-83	510	7.7	18	246
								08-23-85	520	7.4	24	
								09-12-85	460	7.5	23	
			50.20	06-15-83	6							248
			46.80	06-15-83								249
			50,90	06-15-83	2							250
			52.10	06-15-83				06-15-83	610	6.8	16.5	251
								09-17-84	825	7.6	19	
					3			'				252
			49.30	06-16-83				06-16-83	640	6.8	20.0	2 53
			2.99	06-16-83				06-16-83	690	7.3	19	254
								06-16-83	720	7.0	15.5	255
17	48		7,95	06-16-83				06-16-83	650	6.7	15.5	257
								08-23-84	750	6.7	22	
								09-12-85	550	7.1	22	
			4.99	06-16-83				06-16-83	700	7.3	19.0	258
								06-16-83	715	7.1	18.0	259
16	Q		10 40	06-16-83	6			06-16-83	675	7.2	22	2.60
TO	0		TO . 40	00 10 00	0				575	· · 4		200

Appendix C.--Record of wells--Continued

-

-

USGS	Location	Township		Veee	Primary use	Topo-	Hydro-	1.46	Depth of
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
113 200									
261	401658 0802209	Cross Creek	Marcott, Henry	1965	H	s			65
262	401716 0802152	Cross Creek	Vorhes, James	1962	н	S	321PBRGU		130
263	401719 0802152	Cross Creek	Eckles, Robert	1970	н	S	321UNNN		200
264	401736 0802210	Cross Creek	Rouse, Jeaine	1979	H	H	317WBRGU		140
265	401744 0801850	Mount Pleasant	Mount Pleasant Township		U	W	321UNNN		99
266	401745 0801855	Mount Pleasant			U	s	321UNNN		37
267	401740 0801856	Mount Pleasant			U	s	321UNNN		21
268	401658 0802207	Cross Creek	Marcott, Henry	1959	ប	v	321SCKL		60
269	401656 0802214	Cross Creek	Monticello, Julian	1980	H	v	321UNNN		40
270	401754 0801842	Mount Pleasant			U	s	317WBRG		54
2 71	401849 0801945	Mount Pleasant	Pritts, John R.	1978	U	S	317WSNGL		176
272	401926 0801911	Mount Pleasant	Antoazeski, Richard	1980	Н	S	321SCKL		100
274	395824 0802520	East Finley	Studt, Richard A.	1976	н	v	317WSNG		52
276	401759 0801824	Mount Pleasant	Zimmerman, Alan	1966	н	н	321PBRG		200
2 77	401806 0801810	Mount Pleasant	Brown, Margret	1944	U	S	321PBRGU		125
278	400621 0801730	South Franklin	Beeghly, Blaine		U	S	317WBRGU		152
279	400619 0801730	South Franklin	Beeghly, Blaine	1976	P	S	321UNNN		285
280	400617 0801729	South Franklin	Beeghly, Blaine	1977	P	v	317WBRGU		125
281	400635 0801713	South Franklin	Beeghly, Blaine	1977	P	S	317WBRGU		250
282	400647 0801704	South Franklin	Beeghly, Blaine	1979	P	H	317WBRGU		310
283	400646 0801713	South Franklin	Beeghly, Blaine		P	H	317WSNGM		165
2 84	401257 0802009	Hopewell	Roup, Charles	1950	H	S	321UNNN		123
285	401314 0801955	Hopewell	Amos, James	1971	H	S	321UNNN		108
2 86	401315 0801957	Hopewell	Amos, James	1979	H	S	317WBRGL		95
287	401223 0802153	Hopewell	Bredniak, Robert	1979	H	s	321UNNN		140
288	401214 0802203	Hopewell	Bragor, Mary	1960	Н	S	321PBRGU		65
289	401209 0802221	Hopewell	Hixenbaugh, Vaughn		Н	v	321PBRGU		80
290	401208 0802224	Hopewell	Miller, John	1971	H	v	321PBRGU		85
291	401211 0802222	Hopewell	Rothwell, Charles	1974	Ħ	T	321PBRGU		77
292	401238 0802116	Hopewell	Wilkenson, Jerry	1975	H	H	321PBRGU		90
294	401213 0802208	Hopewell			H	v	321PBRGU		100
295	401232 0802304	Hopewell	West. Ronald	1965	Н	s	317WBRGL		100
297	400527 0800502	North Bethlehem	Clark, John	1962	н	Н	317WSNGU		125

Appendix C. --Record of wells--Continued

					Me	asured vie	1d	F	ield wate	r qualit	v	
				Date	Reported	Snecific	Dis-		Specific	nHa	. <u>j</u>	
c	asing	Depth to water-	Water	water	vield	capacity	charge		conduc-	(stan-	Temper-	USGS
Denth	Diamotor	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	aturo	wall
(foot)	(inches)	(fact)	(fact)	massurad	(Bur)	min/ft)	(our)	measured	(uS/cm)	unite)	(deg C)	number
(1960)	(Inches)	(1990)	(1960)	measured	m111)			measured	(45) 641)		(deg C)	Iteminer
								09-12-83	480		22	
								09-12-85		7		
19	8		20.90	06-16-83				06-16-83	5 05	6.9	21	261
								06-16-83	590	6.8	21.0	262
		100						06-16-83	625	6.7	22.0	263
			38.70	06-16-83				06-16-83	695	7.1	16.5	264
21	6		7.67	06-17-83		.08	4	06-17-83	830	7	14	265
		•			- -			08-16-83	850	7.4		
			20.70	06-16-83				06-17-83	287	6.5	15	26 6
			19.10	06-17-83				06-17-83	1,750	6.2	13	267
					10							268
			11.70	06-17-83				06-17-83	805	7	19.5	269
								08-07-84	780	7.6	19	
								08-23-84	600	7.0	20	
								09-12-85	800	7.3	22	
			36,90	06-27-83								270
24	6		42.50	06-20-83		3.3	9	08-18-83	520	6.8	12	271
			46.70	06-20-83				06-20-83	590	7.3	16.5	272
								08-22-84	625	6.9	21	
								09-12-85	600	7 3	15 5	
16	0		16 60	10-03-79	10							274
10					10			07-12-83	860	71	19	276
	E		96 30	07-12-92		07	2	08-19-83	2 750	5 9	19 5	270
24	2	70 / 11	00.30	07-13-63		.07	2	08-19-03	2,750	J. J	10.5	277
25	0	/2/ 11	170.00		2							270
22	10	158/216/225/250	1/0.00	06-02-76	12							2/9
20	10	65	18.00	06-01-//	25						·	280
20	10	165/185	142.00	10-12-77	4							281
20	10	5 5/275	170.00	08-00-79	3							282
			157.00	07-29-83								283
		80						08-04-83	380	7.1	22.5	284
					2			08-04-83	550	7.4	18.0	285
			47.00	08-04-83				04-23-85	545	7.1	14.5	286
								09-26-85	540	7.2	17.0	
			40.10	08-04-83	5			08-04-83		7.4	23	287
								08-04-83	770	8.4	17.5	288
								08-04-83	1,600	8.6	20.5	289
								08-04-83	1,320	8.4	27	2 90
								09-02-83	1,380	8.6		
					4			08-04-83	405	7.4	22.5	291
								09-02-83	410	7.8		
14	8		18.80	08-05-83				08-05-83	505	6.8	22.5	292
								08-23-84	565	7.2	21	
								10-26-84	55	7	18	
			•					04-23-85	580	7.1	14.5	
								09-26-85	560	7.3	16	
												294
								08-05-83	545	7 4	17 5	295
22	۲		85 50	08-10-83	5			08-10-83	1 650	6 7	20	297
<u>4</u> 2	0		00.00	00 IU 00				09-07-83	1 850	7	15	
								07 07-03	T,000	'	10	

Appendix C.--Record of wells--Continued

				Primary					D 11
11505	Logation	Termshin			Frimary	Terrer	Heredow a -		Depth
0303		. Iownship		Veen	use	Topo-	Hydro-		OI
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	Well (feet)
Ws-297									
29 8	400520 0800514	North Bethlehem	Sandrovich, Fhilomen A.	1944	H	s	317WSNGM		140
299	400526 0800456	North Bethlehem	Hohns, Joe	1959	H	Н	317WSNGM		135
300	400526 0800455	Ellsworth	Martina, Charles	1951	H	H	317WSNGU		135
300	·400526 0800455	Ellsworth	Martina, Charles	1951	H	H	317WSNGU		135
301	400604 0800652	North Bethlehem	Foertsch, Arthur		H.	S	317WBRGL		120
3 02	400348 0800559	West Bethlehem			U	S	317WBRGM		55
303	400348 0800559	West Bethlehem	Barnhart, Ralph	1958	U	S	317WBRGM		64
304	400442 0800600	North Bethlehem	Barnhart, Ralph			Т	317WBRGL		110
305	400448 0800403	North Bethlehem	Baker, Alvin	1923	Н	S	317WSNG		65
306	400420 0800412	North Bethlehem	Kinder, Ernest	1978	н	н	317WSNGM		140
3 07	400404 0800547	North Bethlehem	Beck, Ronald	1977	H	S	317WBRGL		150
308	401158 0800120	Nottingham	Mingo Creek Park	1973	P	S	321RDSN		100
309	401157 0800116	Nottingham	Mingo Creek Park	1973	P	S	321PBRGL	SHLE	117
310	401203 0800110	Nottingham	Mingo Creek Park	1973	Р	Т	321PBRGR	SHLE	108
311	401205 0800111	Nottingham	Mingo Creek Park		U	S	321FSPT		25
312	401132 0800231	Nottingham	Mingo Creek Park	1973	P,	v	321PBRGR		78
313	401133 0800222	Nottingham	Mingo Creek Park	1973.	P	v	321RDSN		78
314	401133 0800232	Nottingham	Mingo Creek Park	1973	P	v	321PBRGR		78
315	401132 0800243	Nottingham	Mingo Creek Park	1973	P	v	321PBRGL	SHLE	78
316	401128 0800251	Nottingham	Mingo Creek Park	1973	P	v	321PBRGR	SHLE	78
320	400515 0800425	North Bethlehem			H	H	317GREN		127
3 21	400627 0801752	South Franklin	Maloy, Jason		н	Т	317WSNGM		
3 22	400627 0801752	South Franklin	Maloy, Jason		U U	Т	317WSNGM	-	127
324	402419 0802503	Hanover	U.S. Geological Survey	1984	ប	W ·	321MRGN	SNDS	301
401	401457 0801910	Mount Pleasant	Clayton, Lee	1982	P	S	321PBRGU		180
402	401512 0801852	Mount Pleasant	Salvini, Ronald	1979	H	S	321UNNN	SDSL	90
403	401707 0801955	Mount Pleasant	Phillips, James	1976	Ħ	S	317WBRGL	SHLE	165
404	401717 0801945	Mount Pleasant	Brezinski Robert	1972	ਸ	s	321PBRGU		60
405	401736 0801855	Mount Pleasant	Tustin William	1973	Ħ	s	321PBRG	IMSN	118
405	400508 0800420	North Bethlehem	Thomas Bohart W	1943	н	ŝ	317WSNGU		85
400	400506 0800420	North Bethlehem	Bardina Harold	1917		s	317GPEN		15
407	400308 0800428	North Bechrenem	Berdine, Harold	1917		5	JI/GREN		15
408	400503 0 800428	North Bethlehem	Miller, Joe H.	1930	H	S	317GREN		21
409	400505 0800410	North Bethlehem		1973	H	S	317WSNGM		120
410	400453 0800401	North Bethlehem	McCracken, Donald	1970	H	H	317WSNGU		42

a

Appendix C.--Record of wells--Continued

-

					Measured yield			Field water quality				
				Date	Reported	Specific	Dis-		Specific	pH		
c	asing	Depth to water-	Water	water	vield	capacity	charge		- conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
	· ·			· · · · · · · · · · · · · · · · · · ·								
								11-23-84	1,700	6.7	22	
								04-24-85	1,550	6.8	21	
								09-27-85	1,760	6.8		
					4			08-05-83	1,100	7.0	23.5	298
								08-05-83	1,370	6.8	20	299
								08-05-83	1,550	6.9	17.5	300-
	·							09-07-83	1,550	7.2		300
								08-05-83	610	7.3	20	301
							·	09-07-83	640	7.3	18	
			28.40	08-05-83								302
16	8	~ - .	28.40	08-05-83		.93	2	08-17-83	425	6.7	12	303
								08-05-83	880	8.1	22.5	304
								09-07-83	900	8.4	15	
								08-10-83	640	6.9	23.5	305
		100						08-10-83	690	7.2	14	306
		140			3							307
21	6	29			2			08-17-83	520	7.5	13	3 08
26	6	18			1							309
23	6	38			1							310
			11 70	08-17-83				08-17-83	.770	7	13.5	311
25	6	18	53 20	08-17-83	1							312
25	6				1			08-17-83	745	7.3	14	313
21	6				<1			08-17-83	675	7.4	13 5	314
26	6	17			<1							315
25	6	17										316
25		17						09-07-83	680	74	21	320
			78 50	05-03-84								321
			20 80	05-01-84		03	з	09-05-84	690	73	12	322
250		120/2/0	20.00	11-27-84		.05		09-29-85	1 500	7.5	12 5	324
330	2	130/240	70.00	11-27-84					1,500	/. -	12.5	401
170	8		70.90	06-08-83			75		<i>(</i> / E		1 / E	401
26	8	40				1./	/3	06-08-83	040	7.2	14.5	402
24	8	30	89.50	06-15-83		.00	< <u>1</u>	06-13-83	8/3	7.2	26.0	403
								08-07-84	840	7.6	21	
								04-23-85	860	1.2	23	
								09-11-85	860	6.9	24	
21	8	`	12.50	06-08-83			~-	06-08-83	365	6.0	13.0	404
22	8	42/ 92			10			06-08-83	425	6.7	22.5	405
								06-09-83	800	7.2	21.0	406
			6.70	06-09-83				06-09-83	460	6.4	15.0	407
								04-30-85	365	6.9	28.5	
14	48		15.80	06-09-83				06-09-83	860	6.8	16.5	408
								08-31-84	875	7.1	14	
								11-21-84	850	6.7	11.5	
								04-24-85	810	7	13.5	
								09-27-85	825	7.3	18.5	
					2			09-07-83	1,100	7.1	19.5	409
		-	29.30	06-09-83				06-09-83	350	5.8	16.0	410
								04-24-85	470	6.3	15	
								09-27-85	378	6.3	20.5	

Appendix C.--Record of wells--Continued

...

USGS well number	Location Latitude Longitude (degrees)	_ Township or borough	Owner	Year drilled	Primary use of water	Topo- graphic setting	Hydro- geologic unit	Lith- ology	Depth of well (feet)
Ws-411	400455 0800402	North Bethlehem	McCracken Donald		U	B	317WSNGU		65
412	400405 0800511	North Bethlehem	Golick, Ralph J.	1982	н	S	317WBRGU		150
413	401759 0801620	Mount Pleasant	Hursh, Paul	1980	Н	S	321PBRG		250
413	401759 0801620-	Mount Pleasant	Hursh, Paul	1980	Н	s	321PBRG		250
414	401758 0801610	Mount Pleasant	Houze, John	1980	н	S	321PBRGU	SHLE	150
416	401809 0801807	Mount Pleasant	Nagy, Alex	1977	Н	S	321PBRGU		100
417	401811 0801805	Mount Pleasant	Corwin, Chester W.	1979	H	S	321PBRGU		100
418	401900 0801955	Mount Pleasant	Willkens, Dave	1981		S	317WBRGU	SHLE	130
419	401924 0801958	Mount Pleasant	Schwab, Nada	1975	н	H	317WSNGL		105
420	401926 0802001	Mount Pleasant	Brothers, Jim	1976	H	S	317WSNGL		125
421	401819 0801851	Mount Pleasant	Phillips, Jeanne	1981	H	w	321PBRGU		35
422	401802 0801840	Mount Pleasant	Dagnana, Ralph	1960	Н	S	321UNNN		80
423	401801 0801843	Mount Pleasant	Sarchet, Dennis	1977	H	S	321PBRGU	LMSN	110
424	402053 0801659	Mount Pleasant	Toth, Casper	1967	н	S	321UNNN	LMSN	187
426	401742 0801912	Mount Pleasant	Crowley, Robert	1963	н	H	321UNNN		96
427	401732 0801907	Mount Pleasant	Paluso, Betty	1974	н	H	321PBRG		200
429	401734 0801906	Mount Pleasant.	Lofsterd, Clarence	1978	H	H	321PBRGU		160
430	401733 0801908	Mount Pleasant	Smiley, Ray	1 978	Ħ	Н	321PBRGU		150
433	401654 0801944	Mount Pleasant	Godwin, George	1971	н	н	317WBRGL		120
434	401646 0801938	Mount Pleasant	Godwin, George	1969	н	w	321UNNN		100
435	401738 0801908	Mount Pleasant	Donati John	1973	н	Ħ	321PBRGU		120
436	401740 0801911	Mount Pleasant	Covalesky Jean	1964	н	н	321PBRG		125
437	401738 0801910	Mount Pleasant	Diaz Milton	1971	н	н	321PBRGU		180
438	401756 0801838	Mount Pleasant			Н	S	321PBRG		153
440	401803 0801834	Mount Pleasant	Hickory Grade School	1946	I	S	321PBRGU		122
442	401758 0801844	Mount Pleasant	Watson, John	1977	н	S	321UNNN		125
443	401757 0801843	Mount Pleasant	Keegan, William		н	S	321UNNN		85
444	401800 0801843	Mount Pleasant	Weber, Robert	1965	H	s	321UNNN		80
445	401759 0801842	Mount Pleasant	Dagnana, Julia	1953	H	S	321UNNN		60
446	401757 0801834	Mount Pleasant	Goughnour, Robert	1981	H	Н	317WBRGL		40
447	401833 0801709	Mount Pleasant	Cowden, James C.	1951	H	S	317WBRGL		60
448	401832 0801716	Mount Pleasant	Kelley, Walter	1981	Ħ	S	317WBRGL		
						-			

-

					Me	asured yie	ald	E	ield wate	r qualit	Y	
				Date	Reported	Specific	Dis-		Specific	pH	4	
C	asing	Depth to water-	Water	water	yield	capacity	charge	_	conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level .	(gal/	(gal/	(gal/	Date .	tance	dard	ature	well
(ieet)	(inches)	(IGGC)	(teet)	measured	min)	min/it)	min)	measured	(uS/cm)	units)	(deg C)	number
												411
			90 10	06-09-83				06-09-83	4.25	6 9	20 5	411
			50.10	00 07 00				08-31-84	545	7 2	14 5	412
								11-21-84	540	67	12 5	
			40 80	06-01-83				06-10-83	458	73	18.0	413
			10.00					08-22-84	480	7.5	25	410
								04-23-85	500	79	26	
			40 80	06-01-83				09-11-85	380	7 4	24	413
26	6	70	56.90	06-10-83	<1			06-10-83	800	7.0	20 0	414
			48.80	06-10-83				06-10-83	730	6.6	19 5	416
								06-10-83	560	6 5	23 0	417
29	8	62/ 89	34.10	06-10-83	50			06-10-83	780	6.4	16 0	418
			15.00	01-01-75	15			06-10-83		6.3	19.0	419
					5			06-10-83	800	6.5	16.0	420
					20			06-10-83	550	7.4	15	421
								08-11-83	525	7.6	12	. –
								06-10-83	495	6.4	22.0	422
22	8	64	47.40	06-10-83		.02	1	06-10-83	535	6.8	17.0	423
					1							
29	6	49	44.30	06-13-83		.01	2	06-13-83	480	7.2	22.0	424
20	6							06-13-83	630	7.1	25.0	426
·								06-13-83	590	7.4	23.0	427
			92.60	06-13-83	8			06-13-83	695	7.6	23.0	429
								08-07-84	695	7.6	23	
								04-17-85	710	7.5	14.5	
								09-11-85	675	7.2	23	
			98.10	06-12-83				06-13-83	615	7.5	32.0	430
								08-06-84	610	7.6	16.5	
								04-16-85	635	7.3	13	430
								09-11-85	650	7.3	18	
			52.50	06-12-83	2			06-13-83	480	7.0	28.5	433
					35			06-13-83	545	7.0	25.0	434
		90/105			30			06-13-83	725	6.9	24.0	435
								06-13-83	640	7.1	24.0	436
		75			20							437
								06-13-83	875	7.6	25	438
								08-11-83	450	7.1	18	
			117.00	04-19-53				06-14-83	875	6.8	29.0	440
								08-21-84	930	7.2	19.5	
			34.40	06-15-83				06-15-83	690	7.1	18.5	442
								08-22-84	660	7.2	23	
								04-16-85	660	6.9	23	
								09-11-85	675	6.8	19	
								06-15-83	780	7.1	19.0	443
	-							06-15-83	470	7.0	20.0	444
		'						06-15-83	615	7.2	25.0	445
								06-15-83	1,120	6.7	25	446
		19	20.00	01-01-51				06-15-83	575	6.8	23.0	447
			30.70	06-15-83				06-15-83	600	7.3	2 2	448

Appendix	CRecord	of	wellsContinued
----------	---------	----	----------------

					Primary				Denth
USGS	Location	Township			use	Topo-	Hydro-		of
well	Latitude Longitude	or		Year	of	graphic	geologic	Lith-	well
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
	401711 0801956	Mount Pleasant	Phillins Robert R		H	5	317WBRGI		36
450	401745 0801924	Mount Pleasant	Corwin Juniata	1923	н Н	s	321PBRG		130
452	401820 0801740	Mount Pleasant	Regine Dr	1975	H	s	32111NNN		100
453	401818 0801744	Mount Pleasant	Dinsmore JC	1982	н	s	32111NNN		100
454	401816 0801804	Mount Pleasant	Ware. Lester	1958	н	s	321UNNN		90
455	401813 0801808	Mount Pleasant	Pollinger, Henry	1944	н	H	321UNNN		.95
456	401812 0801809	Mount Pleasant	Bedilion. Eva	1945	H	H	317WBRGL		80
457	401811 0801809	Mount Pleasant	Williams, Roy C.	1990	н	Н	317WBRGL		20
458	401808 0801813	Mount Pleasant	McCalmont, Don	1969	н	S	321UNNN		108
459	401809 0801812	Mount Pleasant	Athey, James B.	1966	н	S	321PBRGU		126
460	401809 0801812	Mount Pleasant	Athey, James B.		U	S	321UNNN		45
461	401815 0801802	Mount Pleasant	Sweetie, Jay		Н	Н	321PBRG		200
462	401814 0801801	Mount Pleasant	Ward, Martin	1965	н	H	321UNNN		110
465	401948 0801741	Mount Pleasant	Bershok, Russel	1976	н	H	317WBRGU		170
466	401714 0801932	Mount Pleasant	Narigon, Cora	1983	н	v	321PBRGU		100
467	401711 0801935	Mount Pleasant	Shaw, David	1977	Н	S	321UNNN		155
468	401729 0801959	Mount Pleasant	Kraeer, Thomas O.	1965	Н	S ·	321PBRGU		60
469	401730 0801858	Mount Pleasant	Kraeer, Thomas O.	1955	H	S	321PBRG		60
470	401720 0801900	Mount Pleasant	Kraeer, Thomas O.	1972	S	v	321PBRG		140
471	401731 0801827	Mount Pleasant	Sparks, James	1979	Н	н	321PBRG		160
472	401733 0801826	Mount Pleasant	Shumaker, Wilbur E.		H	H	321PBRGU		
473	401858 0801847	Mount Pleasant	Carter, Denny	1980	H	S	321PBRGU	LMSN	120
474	401800 0801612	Mount Pleasant	Engel, Kenny	1981	Н	S	321PBRGU		220
475	401759 0801835	Mount Pleasant	Kumer, John	1967	Н	S	317WBRGL	CLSD	185
476	401800 0801833	Mount Pleasant	Cowden, Joe A.		н	S	321UNNN		30
477	401807 0801844	Mount Pleasant	Mason, Ralph		H	S	321UNNN		92
478	401808 0803042	Mount Pleasant	Krysmalski, Charles	1960	н	S	321PBRG		127
479	401806 0803043	Mount Pleasant	Phillips, R.J.	1960	H	S	321PBRGU		100
480	401805 0801842	Mount Pleasant	Haught, John		H	S	321PBRG		140
481	401802 0801708	Mount Pleasant	Cowden, J.C.		U	S	321UNNN		35
482	401757 0801834	Mount Pleasant	Googhenour, Burl	1988	H	S	317WBRGL		22
483	401800 0801836	Mount Pleasant	Reed, Donald		Н	S	321UNNN		112
484	401802 0801837	Mount Pleasant	Jeffervs, Janette	1970	н	s	321UNNN		100
485	401802 0801837	Mount Pleasant	Marguis, Raymond		н	S	321UNNN		90
486	401813 0801758	Mount Pleasant	Dallapiazza. Ken	1980	H	н Н	321UNNN		140
			· · · · · · · · · · · · · · · · · · ·						

3

Appendix C.--Record of wells--Continued

•

•

÷					M	easured vie	ald	F	ield wate	er qualit	v	
				Date	Reporte	d Specific	Dis-		Specific	nHa		
с	asing	Depth to water-	Water	water	vield	canacity	charge		conduc-	(stan-	Temper-	11565
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	hard.	atura	woll
(feet)	(inches)	(feet.)	(feet)	measured	(Sur)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
	(100000)	(1000)							(12) (11)			
			12.50	06-15-83				06-15-83	1,400	6.9	25.0	449
								06-15-83	630	7.0	22.0	450
			33.00	06-16-83	40			06-15-83		7.0	21.0	452
			11.00	06-16-83				06-16-83	740	6.9	22.0	453
								06-16-83	805	7.1	17.0	454
								06-16-83	800	7.0	17.0	455
								06-16-83	800	7.0	26.0	456
								06-16-83	605	6.1	18.0	457
								06-16-83	700	6.6	27.0	458
		120	77.40	06-20-83				06-16-83	760	6.7	24.5	459
			27.10	06-16-83								460
								06-16-83	640	6.6	23.5	461
								06-16-83	810	6.9	22.0	462
20	8		62.90	06-16-83	3			06-16-83	795	6.8	27.0	465
22	8	17/ 35	17.40	06-17-83	25			06-17-83	690		24.0	466
		50			3			06-17-83	790	7.7	20.5	467
		16						06-17-83	550	7.3	24 5	468
												469
			22 50	06-17-83				06-17-83	690	73	18 5	470
			22.30	00 1/ 00				08-21-84	710	7.5	22	470
							÷	04-17-85	700	7.5	14 5	475
								09-12-95	590	7.5	21	
	0		07 / 0	0(-17-02				05-12-83	550	7.2	21	
17	8		97.40	06-17-83	2			08-17-83	100	7.5		. 71
								08-22-84	540	7.9	25.0	4/1
								04-1/-85	5/0	7.3	19	
								09-11-85	520	/.1	14	
			74.40	06-17-83				06-17-83	535	7.4	24.5	
		60	87.80	06-20-83	2						23.0	472
		70	38.80	06-22-83	2			06-22-83	620	7.5		473
								08-22-84	630	7.6	18.5	474
								04-23-85	610	7.7	24	
								09-11-85	620	7.5	28	
		31/ 75			6			06-24-83		7.1	19	
								06-24-83	795	7.1	20.0	475
								06-24-83	575	6.8	19.0	476
								06-24-83	700	7.2	21.0	477
								06-24-83	880	6.9	20.5	478
								06-24-83	860	7.2	25.5	479
			7.28	06-24-83							24.0	480
			12.30	06-24-83				06-24-83	660	6.7		481
			58,30	06-24-83				06-24-83	875	7.0	31.0	482
								08-21-84	890	7.3	32.0	483
								04-16-85	835	7	19	
								09-12-85	600	7.3	21	
								06-24-83		7 3	17	
								06-24-83	845	7 1	31 0	484
			68 80	06-27-02				06-27-92	605	7.2	24 5	485
			00,00	00-27-03				08-07-94	525	1.4	23 0	484
								0/-17-95	600		20.0	
								04-1/-00	020	1.0	10	

Appendix CR	ecord of	wellsContinued
-------------	----------	----------------

USGS well number	Location Latitude Longitude (degrees)	Township or borough	Owner	Year drilled	Primary use of water	Topo- graphic setting	Hydro- geologic unit	Lith- ology	Depth of well (feet)
Ws-486									
((01700 0001001	M		1055			201 0000		
48/	401739 0801831	Mount Pleasant	Lauderbach, Don	1955	п 17	<u>п</u>	JZIPBRG		100
400	401737 0801830	Mount Pleasant	Abara W.C	1928	n v	п 	3210NNN		100
407	401740 0001828	Hount rieasant	Alfins, w.c.	1979	n	п	JZIPBRGU		140
490	401742 0801836	Mount Pleasant	Porter, William	1975	H	H	321UNNN		160
490	401742 0801836	Mount Pleasant	Porter, William	1975	Н	H	321UNNN		160
601	401741 0801834	Mount Plassant	Postar William	1077	ч	۰. ۲	2 2 1 UNINN		105
471	401741 0801838	Mount Pleasant	Zimovno Domo	1977	п 17	3 5	3210000		125
492	401743 0801842	Mount Pleasant	Zimmerman, Donna Ringer Lin	1976	п. 	с с	3210RNN		140
475	401/51 0001041	found fleasant	Kinger, Jim		11	5	52115K60		140
494	401719 0801841	Mount Pleasant	Pirih, Henry	1957	н	S	321UNNN		81
495	401747 0801842	Mount Pleasant	Spada, Tony	1952	н	s	321UNNN		74
496	401745 0801848	Mount Pleasant	Bernard, John	1963	н	S	321PBRGU		110
497	401748 0801803	Mount Pleasant	Cole, Henry	1923	н	H	321UNNN		90
498	401746 0801811	Mount Pleasant	Brezinski, Mark	1977	Н	W	321UNNN		148
499	401748 0801811	Mount Pleasant	Templeton, Lou	1976	н	S	321UNNN	SHLE	150
500	401750 0801807	Mount Pleasant	Palas, Mike	1978	Н	S	321UNNN		150
501	401751 0801808	Mount Pleasant	Fela, Ronald	1976	Н	Н	321UNNN	SNDS	115
503	401920 0802022	Mount Pleasant	Kaste, William F.	1977	н	H	317WSNGL		165
504	401755 0801845	Mount Pleasant .	Faczolari, Donald K.	1949	Н	Н	321UNNN		180
505	401754 0801813	Mount Pleasant	Robison, Larry	.1954	н	Н	321UNNN		75
506	401754 0801812	Mount Pleasant	Cook. Minnie	1956	н	н	321UNNN		140
507	401752 0801810	Mount Pleasant	Caldwell, John T	1952	Н	S	317WBRGL		90
508	401751 0801808	Mount Pleasant	Defibrugh Donald	1950	H	Н	321UNNN		87
509	401751 0801806	Mount Pleasant	Bedillion, John	1952	н	H	317WBRGL		60
510	401749 0801806	Mount Pleasant	Brown, Robert	1976	H	Н	317WBRGL		123
511	401805 0801835	Mount Pleasant	Hickory Up Ch		P	S	321UNNN		140
5 12	401740 0801958	Mount Pleasant	Hickory Up Ch	1975	P	н	317WBRGL		
513	401739 0801904	Mount Pleasant	McCracken, Clair	1965	H	H	321PBRGU		130
514	401739 0801905	Mount Pleasant	McCracken, Clair	1980	H	s	321PBRG		200

	<u></u>				Measured yield			Field water quality				
	1	Bauth to anti-	Wat an	Date	Reported	Specific	Dis-		Specific	pH	T	11000
<u> </u>	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
								08-07-85		76	15	
								09-13-85	600	7.0	15	
								06-27-83	620	7 0	26 0	487
								06-27-83	570	7.0	20.0	407
19	0		97 00	06-27-83				06-27-83	690	7.5	20.0	400
10	0		<i>)</i> /.00	00 27 00	, 			08-21-84	700	7.5	27.5	407
								04-17-85	690	73	14 5	
								09-12-85	710	7.5	17.0	
25	•		43 70	06-27-83				07-08-84	690	67	20	490
25	•		43.70	06-27-82				0/ -17-85	720	0./ 7 2	15	490
25	0		43.70	00-27-03				09-12-85	1 220	7.2	19 5	490
		80						06-27-83	1,220	7.1 6.7	25 5	491
								06-27-83	875	7 0	21.5	471
								06-27-83	710	6.6	21.5	472
								08-16-83	670	7.2	10 5	475
			39 00	10-30-65				06-27-83	950	67	19.5	494
			39.00	10-30-63				06 27 83	630	6.8	20.5	474
			(1 00	06-27-02				06-27-83	745	0.0 7 2	20.5	475
			01.00	00-27-03				06-27-83	745	7.5	23.0	470
								06-27-83		7.3	33.5	49/
			27.90	05-27-83	5 3			06-27-83	600	7 1	30.5	490
								08-11-83	600	7.1	20	
								08-22-84	60U	7 2	20	
		50	12/ 00	01.00.00				04-17-85	535	7.3	10	600
		50	124.00	06-28-83	· 1			06-28-83	570	7.4	21.0	477 500
			31.60	08-28-83				08-28-85	670	0.0 7 7	20	100
								06-22-84	670	7.2	12 5	
								04-17-85	600	6 0	16	
		50						04-28-83	070	0.7 6 0	10	501
		50			/			06-28-83	900	0.9	10.0	501
			133.00	06-28-83				06-26-83	300	2.0	24.0	203
								08-06-84	780	7.2	14	50/
6	10		63,80	06-30-83				06-30-83	900	7.0	22.0	504
								08-22-84	920	7.1	1/	
								04-17-85	880	7.1	13	
								09-11-85	910	7.0	17.5	
								06-30-83		7.0	24.5	505
								06-30-83	1,050	7.0	25.0	506
								06-30-83		7.4	23.5	507
								06-30-83	860	7.0	23.0	508
								06-30-83	590	6.9	25.0	509
		30/ 90			10			06-30-83	'	6.9	21.5	510
			5 8.50	06-30-83	3			06-30-83	590	6.4	22.5	511
								08-21-84	570	6.7	14	
								04-16-85	535	7.0	16	
			55.70	06-30-83				06-30-83	1,200	7.0	23.5	512
												513
			147.00	06-30-83				06-30-83	6 00	7.1	26.5	514
								08-07-84	570	7.6	19	
								04-17-85	610	7.7	17	

.

151 -

					Primary	,			Depth
USG	S Location	Township			use	Topo-	Hydro-		of
wel	L Latitude Longitude	or or		Year	of	graphic	geologic	Lith-	well
numb	er (degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
Ws-5	15 401748 0801906	Mount Pleasant	Barr John	1960		s	317WBRGL		25
5	17 401748 0801904	Mount Pleasant	Krepp Josephine		н	s	321PBRG		150
5	18 401747 0801903	Mount Pleasant	Bezusko Charles	1957	н	s	321UNNN		65
5	19 401750 0801909	Mount Pleasant	Wagner, Harry	1910	н	s	317WBRGL		60
5	21 401748 0801900	Mount Pleasant	Richards. Edward	1900	н	S	321PBRG		210
5	22 401748 0801853	Mount Pleasant	Baroni. John	1940	н	Н	321PBRG		120
5	23 401751 0801852	Mount Pleasant	Martorana. Frank	1958	н	S	321UNNN		100
5	24 401856 0801801	Mount Pleasant	Dallmeyer, Mildred	1949	н	S	317WBRGL		67
53	25 401834 0801800	Mount Pleasant	Miller, James	1947	н	S	317WBRGL		49
53	26 402011 0801716	Mount Pleasant	Hess, George	1978	Н	S	321UNNN		120
53	27 402016 0801720	Mount Pleasant	Herbst, Tom	1976		s	321UNNN		91
53	28 402013 0801730	Mount Pleasant	Herbst, Mary	1977	н	S	321UNNN		110
52	29 402005 0801749	Mount Pleasant	Steiminger, Tom	1979	н	s	317WBRGU		125
53	30 401816 0801805	Mount Pleasant	Acheson, Lois	1913	н	S	321UNNN		65
53	33 401859 0801826	Mount Pleasant	Cohenour, Grandville		Н	Н	321UNNN		125
53	34 401749 0801857	Mount Pleasant	Miller, Donald	1940	н	s	321UNNN		180
50	35 401745 0801851	Mount Pleasant	Lugaila, John	1973	Н	S	321PBRG		142
53	37 401751 0801846	Mount Pleasant	Allison, Jay		H	Н	321UNNN		105
53	38 401754 0801838	Mount Pleasant	Cox, Ronald		H ·	S	321PBRG		160
54	40 401756 0801835	Mount Pleasant	White, Robert	1969	H	H	321PBRG		158
54	41 401756 0801833	Mount Pleasant	Wilson, Louise B.	1965	H	Н	321PBRG		180
54	42 401758 0801831	Mount Pleasant	Walters, Paul		Н	S	317WBRGL		75
54	43 401758 0801830	Mount Pleasant	Hickory, P.O.	1976	с	Н	321PBRG		200
54	44 401757 0801828	Mount Pleasant	Bell, Martha	1978	Н	н	317WBRGL	LMSN	75
54	45 401757 0801828	Mount Pleasant	Bell, Donald		U	s	317WBRGL		30
54	6 401928 0801829	Mount Pleasant	Menzies, Thomas	1977	н	S	321UNNN		100
54	401927 0802033	Mount Pleasant	Robinson, Lee	1966	н	н	317WSNGL		140
54	9 401934 0801827	Mount Pleasant	Weagly, Willis	1973	н	S	321UNNN		75
55	60 401758 0801827	Mount Pleasant	Nunn, James	1954	н	S	321UNNN		67
55	401756 0801830	Mount Pleasant	Butler, John		н	S	321UNNN		110
55	62 401759 0801818	Mount Pleasant	Schilinski, Tom		H	Ħ	317WBRGL		150
-55	3 401803 0801817	Mount Pleasant	Wallace, Richard		H	S	321PBRGU		70
55	401801 0801821	Mount Pleasant	Shurr, Marie		H	S	317WBRGL		30
55	5 401826 0801718	Mount Pleasant	Crowley, Reggie	1983	H	S	321UNNN		76
55	6 401739 0801908	Mount Pleasant	Briggs, Kay	1970	н	S	321PBRG		120
55	401759 0801822	Mount Pleasant	Scott, Dwayne		н	н	317WBRGL		83
55	8 401800 0801824	Mount Pleasant	Carpenter, Harry	1930	н	Н	317WBRGL		95

ł

Appendix C.--Record of wells--Continued

					Measured yield		Field water quality					
				Date	Reported	l Specific	Dis-		Specific	pH		
с	asing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
<u></u>												
		•										
								06-30-83	1,250	6.9	23.0	515
								06-30-83	1,060	6.6	27.5	517
								06-30-83	1,400	6.8	20.0	518
								07-01-83	860	7.0	23.0	519
								07-01-83	960	7.1	23.5	521
								07-01-83		7.4	31.0	522
		'						07-01-83		7. 2	22.5	523
								07-01-83	710	7.1	23.0	524
			23.90	07-01-83	3			07-01-83	645	7.0	22.0	525
			14.40	07-01-83	3			07-01-83	490	6.8	26.5	526
			21.20	07-01-83	3 75			07-01-83	710	7.3	22.5	527
			28.20	07-01-83	3			07-01-83	660	6.8	22.5	528
	<u>-</u>		28.30	07-01-83	3 7			07-01-83	800	6.5	19.5	529
								07-01-83	1,200	6.6	25.0	530
								07-01-83		6.8	23.0	5 33
								07-05-83	710			
								07-05-83	1,010	7.2	22.0	534
								07-05-83		6.8	25.0	535
		·	65.00	01-01-77	2			07-05-83	1,410	6.6	23.5	537
								07-05-83	800	7.0	27.0	538
								07-05-83	810	7.1	24.0	540
								07-05-83	1,000	6.6	28.0	541
								07-05-83	875	6.5	28.5	542
			152.00	07-05-83				07-05-83	755	6.7	27.0	543
								08-21-84	770	6.8	23.0	
								09-11-85	610	6.8	21.0	
		40	38.10	07-06-83	6			07-06-83	740	7.0	18.5	544
								08-08-84	810	7.4	18.5	
								04-16-85	850	7.4	15	
			22.30	07-06-83				07-06-83	540	6.5	16.0	545
		30	18 30	07-06-83	5			07-06-83	740	7 3	22 0	546
		7/ 14/ 90	76 00	07-14-83	40			07-14-83		6 5	18 0	547
			56 40	07-06-83				07-06-83	595	7 2	23 0	549
								07-06-83	745	6.8	21 0	550
								07-06-83	910	6.6	22.0	551
			68 50	07-06-83				07-06-83	1 120	6.7	19 5	552
								07-06-83	q 10	7.0	24 0	553
								07-06-83	1 080	۲.0 د ۵	21.0	554
			17 00	07-06-02				07-07-93	790	7 4	20.5	555
			17.90	07-06-83	7			07-07-83	790	7.0 7.7	29.5	
								08-11-83	540	7.3	15.5	
							-	09-11-83	/ 30	1.5	10	
								08-07-84	610		10	
								04-16-85	670	7.3	13.5	
					2			07-07-83	680	1.0	12.2	226
												22/
			42.40	07-07-83				07-07-83	1,100	7.0	20.0	558
								08-21-84	980	7.6	19	
								04-16-85	1,230	7.2	18	
								09-13-85	850	7	22.5	

Appendix C.--Record of wells--Continued

USGS well number	Location Latitude Longitude (degrees)	Township or borough	Owner	Year drilled	Primary use of water	Topo- graphic setting	Hydro- geologic unit	Lith- ology	Depth of well (feet)
Ws-559	401801 0801815	Mount Pleasant	Ivory, Jane	1961	н	s	321UNNN		130
560	401802 0801814	Mount Pleasant	Loughry, Robert	1940	н	Ħ	321PBRG		220
561	401806 0801810	Mount Pleasant	Brown, Margaret	1973	H	S	321PBRGU	, 	
562	401810 0801808	Mount Pleasant	Kehn, Joe B.	1973	н	s	321PBRG		125
563	401807 0801810	Mount Pleasant	Gross, Fred	1989	H	S	317WBRGL		-15
564	401758 0801817	Mount Pleasant	Donati, William		н	H	321UNNN		160
5 65	401751 0801849	Mount Pleasant	Dire, Louis	1970	Н	S	321UNNN		160
567	401749 0801849	Mount Pleasant	Grimm, Doris	1951	Н	Н	321PBRG		150
568	401740 0801844	Mount Pleasant	Caldwell, James	1950	H	S	317WBRGL		60
569	401706 0802010	Mount Pleasant	Caldwell, Doug	1977	Н	Н	321UNNN		130
570	401759 0801822	Mount Pleasant	Young, James D.		H	Н	317WBRGL		75
571	401711 0801953	Mount Pleasant	Kraeer, Tom	1901	H	S	321PBRG		156
573	401756 0801816	Mount Pleasant	Donati, John A.		н	н	317WBRGL		080
575	400723 0801737	South Franklin	Marth		·H	S	321UNNN		160
577	400720 0801739	South Franklin	Mounts, Mary C.	1979	Н	S	317WBRGU	SHLE	125
578	400730 0801751	South Franklin	Hupp, Leroy	1959	н	v	317WBRGU		66
579	400732 0801756	South Franklin	Hart, Tom	- 1973	Н	- V	317WSNGL	SNDS	185
580	400732 0801756	South Franklin	Hart. Tom		н	v	317WSNGL		45
581	400718 0801744	South Franklin	Houston, Richard	1970	H	S ·	317WSNGM	LMSN	85
582	400715 0801654	South Franklin	Coffield, John R.	1960	н	v	317WBRGU		90
583	400717 0801657	South Franklin	Pryor, Duane	1957	н	S	317WBRGU		080
584	400715 0801658	South Franklin	Cole, Jack	1970	Н	ν.	317WBRGU		90
585	400718 0801706	South Franklin	Houston, Ray	1953	H	S	317WBRGU		65
586	400715 0801702	South Franklin	Verner, Jesse J.	1953	Н	v	317WBRGU		54
587	400716 0801702	South Franklin	Verner, Jesse J.		U	v	112ALVM		7
588	400717 0801701	South Franklin	Balaban, Tom	1963	H	S	317WBRGU		121
589	400722 0801809	South Franklin	Cumer, John		U	H	317WSNGM		150
590	400718 0801703	South Franklin	Burns, Mike	1980	H	S	31/WBRGU		
591	400244 0801726	Morris	Fhillips, Clarence	1968	H	S	31/WSNGM	SHLE	225
592	400245 0801745	Morris	Dittman, Tom	1973	н	S	317WSNGM	LMSN	175

					Me	easured vie	ld	F	ield wate	r qualit	v	
				Date	Reported	i Specific	Dis-		Specific	 Ha	-1	
с	asing	Depth to water-	Water	water	vield	capacity	charge		conduc-	(stan-	Temner-	USGS
Denth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(22)/	Date	tance	dard	aturo	wall
(feet)	(inches)	(feet)	(feet)	measured	(Bur)	(Sul)	min)	measured	(uS/cm)	units)	(deg C)	number
(1990)	(Inches)	(1000)	(2000)	modbured				mousured	(00) 00)	uii 05)	(deg C)	number
		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>										
								07-07-83	1,130	7.3	19.0	559
								07-07-83	1,000	6.8	22.0	560
				07-07-83				07-07-83	1,250	6.5	19	561
								08-19-83	9 50	6.9		
								07-07-83	840	7.2	28.0	562
			7.46	07-07-83				07-07-83	890	6.9	23.0	563
								07-07-83	1,020	7.0	25.5	564
			9 0.50	07-15-83		·		07-15-83	910	6.8	22.0	565
		-						08-21-84	940	7.3	17.5	
								04-17-85	950	7.3	14	
								09-12-85	940	7.2	16	
								07-15-83	860	7.2	28.0	567
								07-15-83	355	6.6	27.0	568
		·	81.00	07-15-83				07-15-83		7.5	24.5	569
			39.10	07-15-83				07-15-83	1,600	7.0	17.0	570
								07-15-83	650	6.7	34.0	571
								07-15-83	1,180	6.8	30.0	573
		52	61.20	07-20-83	8			05-08-85	610	8.7	17	575
			56.00	07-20-83				07-20-83	435	7.2	29.0	576
								08-09-84	440	7.3	13.5	
								09-17-84	395		23	
								05-08-85	410	7.5	19	
								09-17-85		7.1	18	
								09-27-85	440	6.9		
		85	73.90	07-20-83	6	·		07-20-83	415	7.0	29.0	577
								09-17-84	400	7.3	20	
								05-08-85	380	7.4	19	
		17/ 50						07-20-83	625	7.6	28.5	578
		30		·	<1			07-20-83	4,500	6.8	25	579
					<1			08-12-83	3,600	7.3	19	
		30						07-20-83	505	7.0	24.5	580
		32/ 67			15			07-20-83	520	7.0	26.0	581
		- •			15							
								07-15-83	750	7.2	26.0	582
								07-20-83	530	7.1	32.0	583
					·			07-20-83	845	7.0	28.5	584
								07-21-83	580	6.4	31.5	585
								07-21-83	990	7.2	23.5	586
								08-12-83	840	7	19	
			3.57	07-21-83								587
								07-21-83	540	64	27 5	588
			84 90	07-21-83								589
		30						07-21-83	505	6.5	23 5	590
		90			<1			07-22-83	860	7 2	22.0	591
		20			<1						22.0	
		38/175	56 70	07-77-83	~1			07-22-83	725	g 🤉	17 0	592
		00/120	20.70	0, 22 00	ن د			08-09-84	725	8.6	14 5	576
								09-18-84	875	8.8	16	
								04-7/-95	750	0.0 g 5	20	
						-		U - 2 - UJ	10	0.0	<u>.</u>	

Appendix C.--Record of wells--Continued

•

-

USGS well number	Location Latitude Longitude (degrees)	Township or borough	Owner	Year drilled	Primary use of water	Topo- graphic setting	Hydro- geologic unit	Lith- ology	Depth of well (feet)
	<u></u>								
593	400243 0801740	Morris	Hickman Reed	1968	Ħ	v	317WSNGM		107
594	400244 0801740	Morris	Lindley, Earl	1970	H	s	317WSNGU		110
597	400250 0801739	Morris	Lindley, Herbert G.	1980		S	317GREN		160
FOR	400245 0801732	Morría	Phillips James D			5	317WSNGI		103
599	400245 0801732	Morris	Phillips, James D. Phillips, Dan		H	S	317GREN		103
277					_	-	• - · • · ·		
600	400244 0801732	Morris	Phillips, James B.	`	U	S	317GREN		22
601	400247 0801737	Morris	Kiger, Ken L.		H	S	317GREN		21
601	400247 0801737	Morris	Kiger, Ken L.		H	S	317GREN		21
603	400653 0801639	South Franklin	Dyson, William	1971	H	Н	317GREN		135
604	400606 0801632	South Franklin	Miller. Tom	1968	H	S	317GREN		204
605	400606 0801632	South Franklin	Miller, Tom	1968	ប	Н	317GREN		115
606	400616 0801646	South Franklin	Hackney, Ray	1966	H	S	317GREN		198
607	400637 0801646	South Franklin	Johnson, Larry	1977	Н	H	317GREN	SHLE	110
608	400545 0801704	South Franklin	Krehel, Richard	1968	Н	S	317GREN		125
609	400628 0801739	South Franklin	Lone Fine Golf Course	1982	с	v	317WBRGL	,	188
				1066	17	5	21700001		110
611	400/23 0801/42	South Franklin	Meighen, Denis	1966	н 7	5	317WBRGU		118
612	400/19 0801/36	South Franklin	Meighen, Denis	1950		· 2	317WBRGU		100
613	400038 0801534	MOTTIS	Wood, Alvin H.	1961	U	2	31/GREN		47
614	400039 0801531	Morris	Wood, Alvin H.	1972	Ħ,	S	317WSNGM		130
615	400039 0801529	Morris	Wood, Alvin H.		U	s	317GREN		30
616	400037 0801528	Morris	Wood, Alvin H.		U	S	317GREN		55
		Marrieta	A starter Manua	10/8	U	17	2 1 7USNCM		0.0
618	400250 0801746	MOTTIS	Andrew, Nora	1960	п	v	31/W3NG0		90
619	400252 0801744	Morris	Coen Oil		С	S	317WSNGU		
620	401317 0802000	Hopewell	Amos, Gwen	1978	Н	S	317WBRGL		145

•

•

Measured yield Field water quality												
				Date	Reported	l Specific	Dis-		Specific	pH		
С	asing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
- (feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
								09-26-85	700	8.5	18	
								07-22-83	395	6.7	27.0	593
		35						07-22-83	2,800	6.9	23.5	594
								08-16-83	2,500	7.2	16.5	
			28.80	07-22-83	6			07-22-83		7.4	26.0	597
								04-24-85	750	7.6	20	
								09-26-85	740	7.4	18.5	
			33.80	07-22-83								598
			9.46	07-22-83				07-22-83	195	6.1	17.5	599
								04-24-85	410	6.4	21	- · ·
			5.42	07-22-83								600
			10.40	07-22-83				07-22-83	570	72	22 0	601
			10 40	07-22-83				08-09-84	540	7 3	20	601
			10.10	0, 11,00				09-20-84	530	7	15 5	001
								04-24-85	540	, 7 4	22	
								09-26-85	445	7 1	18 5	
		79			2			07-26-83	455	7.0	20.5	603
		/0			2			07-26-83	670	7.0	27.0	603
		60	(9.20	07-26-82				07-26-85	J/0	7.0	23.0	604
		100	66.30	07-26-83				07 04 00	550			605
		138						07-26-83	550	/.3	23.0	606
		36/ 90			25			07-25-83		6.9	24.0	607
					25							
			62,00	07-26-83				09-18-84	655	7.2	20	608
								05-08-85	650	7.2	18	
		86/166	13.40	07-26-83	3			07-26-83	1,550	8.4	25.5	609
								08-09-84	1,950	8.7	21.5	
								09-17-84	2,500	8.6	18.5	
								05-08-85	1,800	9	14	
								09-27-85	2,000	8.5	16.5	
		75	32.00	09-06-66								611
			45.00	00-00-50				07-25-83	425	6.3	17.5	612
		47	16.30	07-28-83			-,-	07-28-83	560	7.0	22.0	613
								09-20-84	415	7	16.5	
								09-26-85	560	7	22	
					3			07-28-83	605	7.1	24.0	614
					3							
			27.40	07-28-83				07-28-83	390	6.5	18.5	615
			22.90	07-28-83				07-28-83	435	6.5	21.0	616
								09-26-85	585	6.7	12.5	
								07-28-83	2,600	8.6	28	618
								09-02-83	2,900	8.4	18	
			17.70	07-24-83		- -		07-28-83	600	7.1	25.0	619
								09-24-84	550	7	19	
								04-24-85	620	7.5	24	
								09-26-85	570	7.2	23	
			39.50	08-19-83				08-19-83	495	6.9	21	620
				-				08-23-84	470	7.4	15	
								04-23-85	410	6.6	14.5	
								09-26-85	5 05	7	14	

Appendix C.--Record of wells--Continued

**

157

•

							Primary				Depth
USGS	Locat	tion	Township				use	Topo-	Hydro-		of
well	Latitude I	Longitude	or			Year	of	graphic	geologic	Lith-	well
number	(degre	ees)	borough		Owner	drilled	water	setting	unit	ology	(feet)
Ws-621	400212 0	0801224	Amwell	Miller.	Reed	1982	н	Н	317WSNGM		125
622	400212 0	801225	Amwell	Miller.	Reed		U	H	317WSNG		· 25
624	400206 0	801227	Amwell	Farabee.	Don F.	1955	H	н	317WSNGM		100
625	400207 0	801224	Amwell	Lemley.	Catherine		н	H	317WSNGM		
626	400205 0	801225	Amwell	Dille, H	arry	1978	H	s	317WSNGM		150
					·						
627	400203 0	801226	Amwell	Tennant,	Don	1980	H	н	317WSNGM		125
628	400219 0	801217	Amwell	Salsberr	y, Ken		H	Н	317WSNGM		19
630	401432 0	802516	West Middletown	Rush, Ja	ne	1965	H	н	317GREN		50
631	401432 0	802519	West Middletown	Brownlee	, Frank	1956	H	H	317GREN		50
632	401433 0	802520	West Middletown	Flowers		1955	H	H	317GREN		85
633	401435 0	802522	West Middletown	Farrer,	Juanita	1950	Н	Н	317WSNGU		150
634	401434 0	802543	West Middletown	McKee, J	anet	1965	н	H	317WSNGU		125
635	401434 0	802540	West Middletown	McMillen	, Wilma	1962	H	Н	317WSNGM		110
636	401434 0	802537	West Middletown	Carter,	Вор	1980	Н	H	317WSNGM		250
640	401433 08	802533	West Middletown	Brownlee	, Sarah		Н	H	317WSNGU		90
641	401434 08	802529	West Middletown	Brownlee	, Jack		н	Н	317GREN		
642	401433 08	802532	West Middletown	King, Ma	rjorie	1957	H	H	317WSNGU		080
643	401434 08	802533	West Middletown	Skariot,	Pat		н	Н	317GREN		37
644	401435 08	802535	West Middletown	Ross, Hou	ner	1974	H	Н	317WSNGM		135
645	401435 08	802536	West Middletown	Keenan,	J	1957	н	н	317WSNGU		88
646	401435 08	802536	West Middletown	Carter, 1	Robert		Ħ	H	317GREN		
647	401435 08	802535	West Middletown	Ross, Hor	ner		U	H	317TNML		• 36
648	401433 08	802530	West Middletown			1974	H	S	317WSNGU		90
649	401434 08	802530	West Middletown	King, Ma	rjorie	1972	H	н	317WSNGU		68
650	401432 08	802511	West Middletown			1964	н	H	31/WSNGM		180
651	401431 08	802511	West Middletown	Gilbert,	Paul	1969	н	H	31/WSNGU		125
652	400214 08	801224 .	Amwell	Heckman,	Earl		н	н			60
653	400215 08	301227	Amwell	Church, I	Dwain	1978	н	S	317WSNGM		100
654	400221 08	301216	Amwell	Tennant,	Donald F.	1954	H	H	317WSNGM		60
655	400218 08	301217	Amwell	Wietasch	, Otto		H	s	317WSNGM		22
656	400218 08	301217	Amwell	Wietasch,	, Market		c	s	317WSNGM		145
657	400213 08	501220	Amwell	Briggs, 3	led	1980	U	5	31/WSNGM		125

					Me	asured vie	ld		ield wate	er qualit	v	
				Date	Reported	Specific	Dis-		Specific	Ha	2	
с	asing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
<u> </u>			9							*****		
		25/ 45/ 75	17.50	09-01-82	2			09-30-83	670	7.1	27.0	621
								09-30-83	860	6.0	17.0	622
								09-30-83	800	6.7	27.5	624
								09-30-83	860	6.8	19.5	625
			72.80	09-30-83	,			09-30-83	850	6.8	20.0	626
						'		08-30-84	760	7.3	2 0	
								10-19-84	815		18.5	
								09-26-85	740	7	25	
								10-19-85		7.1		
125	6	50	89.00	09-30-83				09-30-83	900	7.0	20.0	627
								10-19-84	865	7.2	19	
								05-29-85	875	7.3	26	
								09-26-85	920	7.1	20.5	
			16.50	09-30-83				09-30-83	900	7.0	19.0	628
								10-19-84	815	7.1	19	
								09-27-85	950	6.8	21	
								10-17-83	850	7.0	15.0	630
								10-17-83	850	7.0 .	- 15.0	631
								10-17-83	1,070	7.1	16.5	632
				·				10-17-83	1,550	7.7	17.0	633
								10-17-83	1,100	7.0	21.0	634
								10-17-83	925	7.2	20.0	635
			84.70	10-17-83	12			10-17-83	930	7.2	18.0	636
					12			08-08-84	635	7.6	19	
								10-17-84	850	7.3	18.5	
								05-17-84	990	6.9	15.5	640
								05-17-84	945	6.9	11.0	641
								05-17-84	1,300	6.8	19.5	642
								05-17-84	1,420	6.5	21.0	643
		85						05-17-84	900	7.0	21.0	644
								05-17-84	750	7.0	23.5	645
								05-17-84	345	7	19	646
			43.90	07-17-84								647
								05-17-84	1,380	6.6	22.5	648
								05-17-84	790	6.7	16.5	649
								05-17-84	860	6.6	18	650
								05-17-84	650	6.7	18.5	651
			21.20	05-18-84				05-18-84	770	6.6	16.5	652
							'	08-30-84	670	7.2	16.5	
								10-19-84	600	7.1	16.0	
								05-29-85	700	7.2	21	
								09-27-85	690	6.8	17	
					3			05-18-84	700	6.9	17.5	653
								07-18-84	740	6.5	19.5	654
			20.10	05-18-84				05-18-84	800		15.5	655
								05-18-85		6.8	2 1	
								09-26-85	870	7.3		
								05-18-84	800	6.6	17.5	6 56
			61.00	05-27-84								657

Appendix C Record of werts - Concinue	Appendix	CRecord	of	wellsContinu	ued
---------------------------------------	----------	---------	----	--------------	-----

Appendix	CRecord	of	wellsContinued
----------	---------	----	----------------

USGS well number	Location Latitude Longitude (degrees)	Township or borough	Owner	Year drilled	Primary use of water	Topo- graphic setting	Hydro- geologic unit	Lith- ology	Depth of well (feet)
Ws-658	400209 0801224	Amwell	Briggs, Maybell	1974	H	Н	317WBRGU		200
659	400206 0801225	Amwell	Weitasch, Otto	1970	H	S	317WSNGM	SNDS	126
660	400223 0801220	Amwell	Johnson Charles	1964	н	s	317WSNGM		115
661	400223 0801219	Amwell	Howsdre. Martin		H	H	317WSNGM		150
662	400225 0801221	Amwell	Frye. Ted	1974	Е	н	317WSNGM		90
663	400225 0801221	Amwell	Frye. Ted	1964	н	н	317WSNGM		90
664	400226 0801218	Amwell	Farabee, William	1963	H	S	317WSNGM		150
665	400227 0801222	Amwell		1970	н	S	317WSNGM		122
666	400215 0801219	Amwell	Amity Fire Company	1968	P	S	317WSNGM	SHLE	110
667	400225 0801218	Amwell	Watkins, Bill		Н	S	317GREN		23
668	400228 0801222	Amwell	Elliott. Ken	1951	н	S	317WSNGM		230
669	400233 0801221	Amwell	Gaus. Margret	1954	H	н	317GREN		110
671	400200 0801225	Amwell	Beddon. Clarence		н	S	317WSNGM		25
672	400157 0801225	Amwell	· · · · · · · · · · · · · · · · · · ·		н	Т	317WSNGM		160
673	400229 0801220	Amwell	Wood, Clyde	1940	н	н	317GREN		55
674	400431 0801028	Amwell	Clark		н	S	321UNNN		57
675	400430 0801027	Amwell	Houston, Ivan	1964	н	S	321PBRGU		101
676	400429 0801029	Amwell	Koscho, Joseph		н	S	321UNNN		93
677	400429 0801029	Amwell	Koscho, Tim		н	S	321UNNN		080
678	400432 0801034	Amwell	Ballard, Alice		Н	S	321UNNN		100
68	402413 0802924	Hanover	Meise, Charles and Francis	1918		S	321CNMG		2,460
680	400450 0801042	Amwell		1955	с	V	321UNNN		60
681	400459 0801045	Amwell	Stephens, Frank	1959	H	S	321UNNN		100
682	400428 0801022	Amwell	Taylor, James		U	v	321UNNN		15
683	400428 0801020	Amwell			H	v	321UNNN		20
684	400413 0801025	Amwell	Horne, Monna	1967	H	S	321UNNN		100
685	400420 0801022	Amwell	Mitchel, Thomas	1954	Н	S	321PBRG		150
687	400449 0801051	Amwell	Efaws, Curtis	1934	Ħ	v	321PBRG		100
689	400445 0801044	Amwell	Rasel, Frank	1978	н	S	321UNNN		120
690	400443 0801043	Amwell	Lightner, Fred R.	1947	н	S	321UNNN		108
691	400442 0801040	Amwell	Sanders, Chuck		H	S	321UNNN		65
692	400412 0801023	Amwell	Smith, George		н	S	321UNNN		102
693	400413 0801016	Amwell	Smith, Patricia		н	S	321UNNN		60
694	400420 0801021	Amwell	Hertze, Richard	1966	Н	S	321UNNN		170
695	400418 0801021	Amwell	Riggle, Earl		н	S	321UNNN		68
696	400418 0800958	West Bethlehem		1960	н	Н	317WBRGL		080

4	*****				M	easured vie	ld	I	Field wate	r qualit	.v	
				Date	Reported	d Specific	Dis-		Specific	рĦ		
с	asing	Depth to water-	Water	water	vield	- capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	<pre>- bearing zone(s)</pre>	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
								05-22-84	840	6.7	25.5	658
-		42	38.00	05-22-84	2			05-22-84	670	6.5	23.5	659
								09-26-85	580	7.2	27	
			35.00	00-00-76				05-22-84	725	6.7	26.0	6 60
								05-22-84	800	6.6	23.0	661
								05-22-84	920	6.5	22.0	662
												663
			78.00	05-12-84	6			05-22-84	800	7.0	30	664
					22			05-22-84	890	6.8	20 0	665
		75/ 90			50							666
			16 50	03-00-84				05-23-84	560	6.8	22 5	667
			10.50	00 00 04				10-19-84	565	7 2	16	007
		60/175	200 00	00-00-51				05-23-84	750	7 1	23 0	668
		00/1/5	200.00								20.0	669
		40	24 00	00-00-54				05-23-84	340	5 8	22 0	671
			24.00	05-23-94				05 25 04	540	5.0	22.0	672
		24	44.30	05-25-84								672
		34										673
			71 00	00-00-04				05-24-84		7 3	22 0	674
			/1.00	00-00-64				05-24-84	1 0 2 0	7.5	22.0	675
		····· /`						03-24-84	1,020	0.0	22.5	6/0
	,							05-04-04			2/ 5	677
			43.80	05-24-84				03-24-84		9.1	24.5	6/0
									1 100			60
			21.00	05-24-84				05-24-84	1,100	/	15	680
								08-30-84	1,140	0.2	12.5	
								10-25-84	11,100	8.3	13	
								05-29-85	1,170	8.4	14	
								09-26-85	1,030	8.1	22	
								05-24-84	850	6.6	17.0	681
								05-24-84	1,020	6.5	21.0	682
			15.00	05-24-84								683
								05-24-84	400	6.8	25.0	684
		140						05-25-84	1,150	7.2	2 2.0	685
								05-25-84	1,450	8.6	27.0	687
		60/ 80/100	56.70	05-25-84				05-25-84	1,170	8.4	23.5	689
								05-29-85	1,280	8.5	25	
								09-27-85	1,370	8.3	20	
								05-25-84	1,500	8.7	23.0	690
			34.10	05-25-84				05-25-84	1,120	7.6	23	691
								10-25-84	1,100	7.9	18.5	
								05-29-85		7.9	24	
								09-26-85	1,090	7.9	21	
								05-25-84	445	6.7	26.0	692
		60						05-24-84	2,000	7.2	23	69 3
												694
			56.00	00-00-48				05-25-84	1,900	8.1	26.0	695
		55	37.10	05-25-84				05-25-84	600	6.3	22	696
								08-30-84	565	7.3	16	
								10-25-84	650	7.3	17.0	

161 `

					Den i - a una				Denth
11000	Terebien	Tarmahim			Frimary	Terrer	Budnon		Depth
0565	Location	lownship		¥	use	10po-	nyaro-	T / + h -	OI Noll
numbe	r (degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
	6								
ns 07	5								
69	7 400436 0801017	Amwell	Frazee, James R.	1981	Ħ	v	321UNNN		108
69	8 400533 0801026	Anwell	Curry, Vaughn	1952	H	v	321UNNN		85
69	9 400509 0801000	Amwell	Brewer, Lee		H	W	317WBRGL		27
70	400514 0800959	Amwell	Gregg, Frank	1965	H	W	321UNNN		120
70	2 400433 0801020	Amwell	Curry, Paul		U	v	321UNNN		16
703	3 395933 0802947	West Finley		1969	H	Н	317GREN		90
70-	395934 0802749	West Finley	Hughs, Charles	1969	H	Н	317GREN		104
70	5 395937 0802803	West Finley	Mahon, Roy	1970	H	н	317GREN		080
70	395935 0802801	West Finley	Anderson, Kate		U	н	317GREN		38
70	395940 0802800	West Finley	Anderson, Kate	1971	н	Н	317GREN		133
708	395933 0802751	West Finley	Raymer, Harry	1964	Н	Н	317GREN		129
709	395935 0802723	West Finley	Raymer, Harry		Н	, H	317GREN		30
710	395937 0802752	West Finley	Allum, Blaine	1981	Н	H	317GREN		100
71:	L 395930 0802737	West Finley	Hartzell, Jean	1968	н	H	317GREN		080
712	395935 0802747	West Finley	Allum, Blaine	1974	н	H	317GREN		98
713	395939 0802747	West Finley	Allum, Blaine		H	S	317GREN		28
714	395935 0802734	West Finley	Allum, Fred		Н	S	317GREN		37
715	395935 0802734	West Finley	Braddock, Robert	1963	Н	S	317GREN		32
716	395942 0802743	West Finley	Clutter, Ola		U	S	317GREN		60
717	395940 0802746	West Finley	Furmanek, Joseph		Н	S	317GREN		29
710	205030 0802745	West Finley	Stollar Jalla		T	s	317GREN		25
710	395939 0002745	West Finley	Scollar, Lalla	1972	ਸ	н	317GREN		107
715	395930 0802745	West Finley	Earnest, Lloyd		11	ਸ	317GREN		62
- 720	395930 0802745	West Finley	Hartzoll Olive		ਸ	н Н	317GREN		33
/21	. 393932 0802747	west rinley	hartzell, Ulive		11	11	517 GALIA		55
722	395932 0802748	West Finley	Iley, Dale	1980	н	н	317GREN		101
723	395933 0802748	West Finley	Emery, Stephen	1959	н	Н	317GREN		100
724	395933 0802748	West Finley	Mahan, Lyssir		н	H	317GREN		080
725	395934 0802804	West Finley	Baker, Carol	1976	н	Н	317GREN		76
726	395957 0802753	West Finley	Clutter, Sarah	1950	н	Н	317GREN		115
727	395936 0802748	West Finley	Terrell, Charles E.		н	н	317GREN		22

Appendix	CRecord	of	wellsContinued
----------	---------	----	----------------

-

				<u>.</u>	Measured yield		Field water quality					
_		.		Date	Reported	1 Specific	Dis-		Specific	pН	_	
C	asing	Depth to water-	Water	water	yield	capacity	charge	-	conduc-	(stan-	Temper-	USGS
)epth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
								05-29-85	580	7	24	696
								09-27-85	530	, 6.7	19	0,0
		27	2.50	07-00-81				05-25-84	850		8.5	697
			25.00	00-00-68				05-31-84		6.6	18.0	698
			17.00	00-00-79				05-31-84	580	7.7	21	699
								05-31-84	560	7.7	21	700
			1.90	05-31-84								702
		55/ 70	66.20	06-02-84	3			06-04-84	840	6.9	25.0	703
			54.00	00-00-69				06-01-84	710	6.7	16.5	704
								06-01-84	570	6.7	18.0	705
			30.50	06-01-84								706
								06-01-84	530	6.4	17 0	707
					35			06-01-84	590	6 4	20	708
												709
					2			06-01-84	120	64	29 5	710
					10			06-01-84	570	6.6	19.5	711
								06-01-84	760	6.9	22.5	712
5	27		18.40	06-01-81				06-01-84	440	6.3	11.5	713
-								05-24-85	495	7.6	25	
			29.00	06-01-84				06-01-84	510	7.2	15	714
								08-23-84		7.2	21 5	
								09-21-84	430	7	21.5	
								05-29-85	445	7.3	18	
								09-26-85	405	7.2	2.0	
			26.20	06-01-84				08-23-84	435	7.2	21 5	715
								09-21-84	430	7.0	21.5	
								05-29-85	445	7.3	18.0	
								09-26-85	405	7.2	20.0	
			35.50	06-04-84				06-04-84	320	6.9	27 5	716
								09-21-84	405	7.1	25.5	
								05-29-85	445	7.4	18	
			16.40	06-04-84				06-04-84	300	6.7	27	717
								05-24-85	365	7.5	24	
								09-26-85	320	7 3	21	
			13 10	06-04-84				06-04-84	570	6 6	12 0	718
		60			2			06-04-84	615	6 6	22 0	719
			57 10	06-04-84								720
			23 60	06-04-84				06-04-84	300	6 5	23	721
			23.00	00 04 04				09-21-84	275	7	19 5	, 21
								05-24-85	300	, 7	22	
								09-26-85	290	7 1	14	
								06-04-84	690	7 0	28 0	722
								06-04-84	600	,.u	20.0	723
								06-04-84	580	7 2	20 0	724
		25						06-04-84	710	7 N	19 0	725
												726
			16 10	06-04-84				06-04-84	360	7 1	26	727
			10.10	00 04-04				08-23-84	475	7 4	26	,
								JU 20 04	- / -	/ . 7	.	

163 ·

-

Appendix	CRecord	of	wellsContinued
----------	---------	----	----------------

					Depth				
USGS	Location	Township			use	Topo-	Hydro-		of
well number	Latitude Longitude (degrees)	or borough	Owner	Year drilled	of water	graphic setting	geologic unit	Lith- ology	well (feet)
Ws-727									
728	395936 0802748	West Finley	Terrell, Charles E.		H	н	317GREN		23
729	395937 0802749	West Finley	Danley, Lee	1973	́ Н	Ħ	317GREN		140
730	395936 0802749	West Finley	Danley, Lee		U	н	317GREN		17
731	401514 0800327	Independence	Pittman, Ralph		H	S	317WBRGL		21
732	401512 0803036	Independence	Cook, Margie		н	W	321UNNN		70
733	401516 0803035	Independence	Buxton, Alexandria I.		H	S	321PBRG		120
734	401515 0803029	Independence	Prtle, Florence		H	S	317WBRGL		15
735	401512 0803024	Independence	Hammond, Minnie		Н	S			
735	401512 0803024	Independence	Hammond, Minnie		H	S			
736	401512 0803022	Independence	Dipiatro, Joseph	1925	н	н	317WBRGL		44
737	401514 0803023	Independence	Dipiatro, Robert	1977	H	Н	321UNNN		100
738	401514 0803020	Independence	Dipiatro, Joseph		Н	Н	321UNNN		90
739	401513 0803026	Independence	Georgetti, Susan	1964	Н	S	321UNNN		080
740	401535 0803018	Independence	Robison, Ernest	1977	H	н	31/WERGU		165
741	401511 0803023	Independence	Cutlip, William	1968	л н	ъ н	321PBRG		160
742	401513 0803020	Independence	Rush Ken	1966	н	н	317WBRGL		55
745	401515 0803016	Independence	Westlake Wendell		н	S	317WBRGL		75
746	401517 0803014	Independence	······		H	S	317WSNGL		20
747	401518 0803016	Independence	Ryniawec, John	1952	Н	Н	317WBRGL		110
							ę		
748	401515 0803017	Indépendence			Н	S	317WBRGL		125
749	401516 0803026	Independence	Sella, Donald		Ħ	S	317WBRGL		30
750	401514 0803022	Independence	Woodburn, Estelle		н	S	317WBRGL		15
751	401527 0803016	Independence	Pirillo, John	1976	Н	S	317WBRGL		100
754	401455 0803008	Independence	Hopwood, Thelma	1960	U	w	321UNNN		
755	400937 0802238	Blaine	Crawford, Joan		H	S	317WBRGL		18
756	400937 0802241	Blaine	Hubley, David	1981	н	S	317WBRGL		60
757	400932 0802300	Blaine	Lyle, Charles	1969	н	s	317WBRGL		125
759	400934 0802250	Blaine	Miller, Gale	1950	Н	S	321UNNN		125

						Me	asured yie	1d	F	ield wate	r qualit	y	
				Date	Reported	Specific	Dis-		Specific	pH			
C	asing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS	
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well	
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	·min)	measured	(uS/cm)	units)	(deg C)	number	
,			- <u> </u>						andra a sa shekara andra katikan				
								05-29-85	480	7.6	18		
			15.70	06-04-84				06-04-84	520	6.9	23	728	
								09-21-84	490	7.1	19		
								05-29-85	565	7.8	12		
								09-26-85	480	7.2	18		
		40/ 70/105	90.00	05-19-73	33			06-04-84	625	7.0	25.0	729	
			10.10	06-04-84								730	
			9.85	07-16-84				07-16-84	1,400	6.6	26.5	731	
								10-17-84	1,560	6.8	21		
								05-24-85	1,700	7.1	19		
								09-27-85	1,170	7.6	16		
			27.00	00-00-75				07-16-84	700	7.1	28.0	732	
								07-16-84	760	7.0	23.0	733	
								07-16-84	950	6.6	25.0	734	
				07-16-84		`		07-16-84	875	6.7	31	735	
								08-08-84	925	7.1	20		
				07-16-84				10-17-84	925	7	19	735	
								05-24-85	735	7	20		
								09-27-85	775	6.9	19.5		
								07-16-84	1,100	6.8	27.0	736	
								07-17-84	1,020	6.7	21.0	737	
								07-17-84	1,120	6.9	19.0	738	
								07-16-84	950	6.8	31.0	739	
20	8		37.20	07-16-84								740	
				'				07-17-84	940	6.5	21.5	741	
								07-17-84	1,050	7.1	26.5	742	
								07-17-84	800	7.0	24.5	743	
			55.00	00-00-50				07-17-84	1,000	7.0	28.5	745	
			8.00	07-17-84				07-17-84	740	7.0	28.5	746	
25	8	27/ 90	55.30	07-17-84	·			07-17-84	940	7	25	747	
								10-17-84	1,080	7.1	16		
								05-24-85	900	7.1	18		
								09-27-85	1,090	7.1	17.5		
			40.00	07-17-84				07-17-84	925	7.1	28.5	748	
								07-17-84	1,380	6.5	27.0	749	
			6.52	07-17-84				07-17-84	1,010	6.4	19	750	
								10-25-84	820	7.0	13.5		
								05-24-85	1,070	7	17		
								09-27-85	800	6.9	19		
			14.30	07-18-83	26			07-18-84	1,050	7	19	751	
								05-24-85	1,020	7.2	17		
								07-18-84	550	6.8	22	754	
			16.50	00-00-72				07-23-84	445	7.3	26.0	755	
		40	24.60	07-23-84	60			07-23-84		6.7	27	756	
								10-17-84	1,130	7.1	19.5		
								04-23-85	1,290	7.2	22		
								09-18-85	980	6.9	21		
												757	
								07-23-84	770	7.4	24.0	759	

Appendix	CRecord	of	wellsContinued
----------	---------	----	----------------

...

USGS well number	Location Latitude Longitude (degrees)	Township or borough	Owner	Year drilled	Primary use of water	Topo- graphic setting	Hydro- geologic unit	Lith- ology	Depth of well (feet)
Ws-760	400937 0802240	Blaine			н	S	321UNNN		70
761	400940 0802249	Blaine	Crowley	1960	н	S	31/WBRGL		50
762	400940 0802249	Blaine	Dutton, Darlene	1980	н	S	317WBRGL		150
763	400933 0802249	Blaine	Witsberger, Mildred	1954	H	S	321UNNN		85
764	400935 0802243	Blaine		1973	H	S	317WBRGL		129
766	400938 0802248	Blaine	Shriver Willis	1958	н	s	317WBRGL		080
767	400939 0802248	Blaine	Shriver Willis		н	s	317WBRGL		34
768	400938 0802252	Blaine	Scott Elapor	1952	н	s	321UNNN		70
769	400946 0802251	Blaine	Rascoe, Patricia	1980	н	s	321PBRG		180
770	400946 0802251	Baline	Rascoe. Patricia		U	S	321PBRG		180
771	400935 0802239	Blaine	Westfall, Paul	1954	н	S	321UNNN		59
772	400932 0802234	Blaine	Westfall, Thomas	1963	н	v	111ALVM		62
773	400937 0802230	Blaine		1956	н	v	321UNNN		49
774	400938 0802235	Blaine		1951	Н	v	321UNNN		55
775	400937 0802239	Blaine	Grose, Walter R.		H	S	321UNNN		75
776	400938 0802242	Blaine	Grose, Walter R.	1975	с	S	317WBRGL		124
777	400936 0802241	Blaine	Lyle, Charles	1948	С	S	321UNNN		75
778	400938 0802258	Blaine	McGuier, Jay		H	S	317WBRGU		50
779	400936 0802259	Blaine	Blayney, Robert	1941	H	S	317WBRGU		53
780	400941 0802255	Blaine	Mumper, James	1981	н	S	317WBRGL		87
781	400932 0802235	Blaine	Grose, Walter R.		H	S	321PBRG		125
782	400939 0802246	Blaine	Pettit, Donna		Н	S	321UNNN		50
783	400937 0802251	Blaine	Shriver, Willis	1981	н	S	317WBRGM		100
784	400936 0802244	Blaine	Cunningham, Donald	1964	H	S	317WBRGL		48
785	400934 0802247	Blaine	Graboski, Edward		H	S	321UNNN		87
786	400924 0802221	Blaine	Snodgrass, Harry	1956	H	v	317WBRGL		120
- 787	400925 0802222	Blaine	Till, Richard		Ħ	S	321UNNN		90
789	400930 0802244	Blaine		1974	Н	S	321UNNN		90
790	400928 0802227	Blaine	Holmes, Opal		н	V	317WBRGL		20
791	400931 0802227	Blaine	Butterfield, Emma	1955	Н	V	321UNNN		53
792	400932 0802228	Blaine	Robson, Arthur	1969	C 	v			150
793	400931 0802228	Blaine	Robson, Arthur		н	v	31/WBRGL		30
794	400928 0802225	Blaine	Clutter, Lawrence		H T	5	JZIUNNN		75
795	400802 0802003	Buffalo	Jarvis, Robert	1973	н	н т	31/WBRGL		1/5
796	400803 0802003	Buffalo	Holloway, Lucille	1964	н	E S	31/WBRGU		165
197	400801 0802004	Buffalo	Wright, Thomas	1979	п	2	31/WERGU		16/
798	400804 0802003	Buffalo	McAdoo, Clifford	1974	н	S	317WBRGU		200

+
					Measured yield			Field water quality				
				Date	Reporte	d Specific	Dis-		Specific	pH		
c	asing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
											· · · · · · · · · · · · · · · · · · ·	
												760
		40						07-23-84		7	24	761
			33 20	07-23-84	5			07-23-84	660	72	31	762
								04-23-85	735		16	
								07-23-84	680	74	31 0	763
			25.10	07-23-84				07-23-84	850	6 7	29 5	764
			25.10	0, 20 0,				08-22-84	770	74	19	,
								10-17-84	830	7.3	25 5	
								04-23-85	835	7 4	20	
						. -		09-18-85	890	7	18	
		30			6			07-25-84	820	, 6 8	27 0	766
			10 10	07-25-84				09-18-85	1 0.80	7 2	13	767
								07-25-84	900	6.9	26 0	768
												769
			43 90	07-25-84							·	770
		20/ 32/ 59						07-25-84	1 000	68	27 5	771
			3 00	00-00-63	100							772
		15/ 31/ 41/ 48	6.00	08-00-56	40							773
		21/ 3/ 39										774
			37 50	07-25-84				07-25-84	1 010	65	17	775
			37.30	0/ 23 04				08-22-84	925	7 2	16	,,,,
								10-17-84	930	7 1	.7 5	
								09-18-85	975	7	21	
			12 30	07-25-84								776
			12.30	07 25 04				07-25-84	1 300	7 /	32 0 .	775
			33 00	08-00-83				07-26-84	670	6 4	25 5	778
			24 40	07-26-84				07-26-84	570	6.6	23.5	779
			24.40	0/2004				10-18-84	570	6.6	20.5	,,,,
								09-18-85	560	6 5	20	
		4.0	40.00	10-00-81	з			07-26-84	800	6.7	23 5	780
		40						07-26-84	780	7 0	26.0	781
											20.0	787
6		50			з							783
		42/ 48			32			07-26-84		7 2	30.0	784
		42/ 40			52							785
		20						08-01-84	480	6 5	25 5	786
		20						08-01-84	370	7 1	29.0	787
								08-01-84	600	7.1	25.0	789
								08-01-84	990	7.2	20.5	707
								08-01-84	1 420	7.0 9.5	31 0	790
			 50 00					08-01-84	1,420	0.5	32.0	771
20	8	50	20.20	08-01-84	1			08-01-84	1,400	2.0	30.0	793
			3.22	00-01-04				08-01-84	1,000	9.0	27 0	795
6								08-02-04	520	J./	21.U 27 5	795
					2			08-02-84	120	7.4 7 7	27,3	775
			 E0 00					08-02-84	600	/./ 7 /	20.0 04 5	770
		120	30.00	08-02-84	د			06-02-04	470	7.4 7 7	20.0	171
								09-19-05	070	/./ 7 0	20	
			104 25	00 07 7				08-00 0.	4/0	/.8 7 7	23	700
			106.00	08-02-84				08-02-84	620	1.1	21	198

-

167 `

USGS <u>Location</u> well Latitude Longitude number (degrees)		Township or borough	Owner	Year drilled	Topo- graphic setting	Hydro- geologic unit	Lith- ology	Depth of well (feet)	
Ws-798									
799	400801 0802005	Buffalo	Bonar, William	1979	Ħ	S	317WSNGM		
800	400759 0802005	Buffalo	Mounts, Harry	1963	E	Н	317WSNGM		93
801	400800 0802004	Buffalo	Hobberchalk, Ralph	1970	Н	H	317WBRGL		175
802	400759 0802007	Buffalo	Roberts, Charles	1965	H	H	317WBRGU		150
803	400757 0802006	Buffalo	Silvers, George	1963	Н	Н	317WBRGU		160
805	400800 0802006	Buffalo	Burt, Jack	1965	Η	H	317WBRGU		128
806	400803 0802004	Buffalo	Hall, Linda	1969	Ε	S	317WBRGU		145
807	400802 0802005	Buffalo	Johnson, David	1964	U	S	317WBRGU		175
808	400758 0802008	Buffalo	Waugh, Lenford	1964	ប	S	317WSNGM		126
810	400830 0802216	Buffalo	Mcguffey High School	1961	P	v	317WBRGL		60
811	400808 0802028	Buffalo	Phillips, Larry		Н	s	317WSNGL		9 0
812	400807 0802034	Buffalo		1954	H ·	S	317WSNGM		45
813	400809 0802032	Buffalo		1954	н	S	317WSNGM	~-	90
814	400757 0802027	Buffalo	Beck, James		H	S	317WBRGU		100
815	400757 0802025	Buffalo	Nuzum, Kenneth	1969	H ·	S	317WBRGU		106
816	400757 0802024	Buffalo		1969	H	S	317WSNGL		75
817	400754 0801948	Buffalo	Westerman, Jean	1968	н	, S	317WSNGM		080
818	400801 0801946	Buffalo	Hopkins, John		Ħ	S	317WSNGM		135
819	400802 0801916	Buffalo	Nixon, Ed	1971	Н	S	317WBRGU		180
820	400758 0801947	Buffalo	Whitley, Audry	1976	H	S	317WSNGM		180
									••
821	400939 0801935	Buffalo	Zappi, Connie	1974	H	H	317GREN		100
822	400939 0801935	Buffalo	Dejohn, John	1976	Н	Н	317GREN		125
823	401304 0802242	Hopewell		1984	н	н	317WBRGL		125
824	401317 0802241	Hopewell		1984	н	Н	317WBRGU	COAL	150
825	401310 0802240	Hopewell			U	H	317WBRGU		236
826	401315 0802241	Hopewell	Levers, Sally	1969	H	H	317WBRG		150
827	401339 0802136	Hopewell	Roney, James		Ħ	H	317WSNGM		66
828	401336 0801238	Hopewell	Perry, Debby	1978	H	H	317WSNGL		
829	402139 0801334	Hopewell	Burk, Donald	1961	H	Н	317WBRGL		135
830	401359 0802117	Hopewell	Pushey, Darren		Н	H	317WSNGM		
831	401400 0802116	Hopewell	Plymira, Joe	1957	н	H	317WSNGM		75
8 32	402113 0801505	Hopewell	Coulter, Robert	1978	н	Н	317WSNGM		120
833	401403 0802058	Hopewell	Brezenski, Richard	1974	H	Н	317WSNGM		110
834	401403 0802052	Hopewell	Kovacicek, Joe	1975	H	H	317WSNGM		95
835	401405 0802050	Hopewell	Kovacicek, Joe	1978	H	Н	317WSNGM	SHLE	106
836	401401 0802037	Hopewell	Richmond, Nancy	1977	Н	н	317WSNGM		

					Measured yield		Field water quality					
				Date	Reported	l Specific	Dis-		Specific	pН		
	Casing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS
lepth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
	n ann aithre Mhaile a sa' - 10 - 11 - 17 - 18 - 17							09-32-84	E (E	<u> </u>	20 F	
								10-12-04	570	0 7 0	20.5	
								10-12-84	570	7.0	20	
			20.10	08-06-04				04-23-85	570	7.0	24	700
			30.10	08-05-84	5			08-06-84	570	7.4	28 10 F	799
								10-21-84	330	7.5	19.5	
								09-18-85	470	7.5	1/.5	
								08-06-84	510	7.3	28	800
								08-06-84	510	1.4	29.0	801
												802
								08-06-84	475	7.4	28.5	803
								08-06-84	560	7.5	27.0	805
								08-06-84	540	7.1	31.0	806
							-					807
			34.20	08-06-84								808
			1 0 .30	08-06-84				10-12-84	1,030	7.1	15	810
								04-23-85	970	7.4	15	
								09-18-85	1,100	7	13	
								08-07-84	525	7.1	28.0	811
21	6	30			5			08-07-84	270	6.9	28.0	812
21		30/ 60			3							813
								08-06-84	335	6.7	28.0	814
			21.00	00-00-80				08-07-84	365	6.7	25.0	815
												816
			40.00	00-00-82				08-07-84	625	6.8	26.0	817
			78.80	08-07-84				08-07-84	700	7.4	31	818
								10-12-84	655	7.4	24	
								04-23-85	710	7.9	22	
								09-18-85	660	7.3	21	
								08-07-84	600	7.0	28.5	819
		/	80.90	08-07-84				08-07-84	600	7	28	820
								10-12-84	600	7.5	21	
								04-23-85	630	7.6	23	
								09-18-85	620	7.2	18	
				08-07-84				08-07-84	650	6.8	23 5	821
		70	62 10	08-07-84	7			08-07-84	700	7 0	20 0	822
		00/ 3P	43 20	08-16-84	,							823
		90/ 38	45.20	00-16-04	5							824
			93.90	00-16-04								975
			97.30	08-16-84					0.05		27.0	025
					5			00-16-84	220	0.7	27.U	020
60	4		43.70	08-16-84				U8-16-84	800	0.9	28.5 07.0	02/
			46.40	08-16-84				08-16-84	900	0.6	27.0	828
		55						08-17-84	/50	1.0	30.0	829
			12.60	08-17-84								830
								08-17-84	500	6.9	28.0	831
		60			8			08-17-84	580	6.9	26.0	832
			60.30	08-17-84	15			08-17-84	700	6.8	31	833
		38/ 65/ 84	18.30	08-17-84	15			08-17-84	700	7.0	26.0	834
		50/ 65/ 86	26.80	08-17-84	8			08-17-84		7.1	25.0	835
			16.30	08-17-84				08-17-84	580	6.8	28.0	836

Appendix CRecord of wellsContinued

•

Appendix	CRecord	of wellsContinue	d
----------	---------	------------------	---

					Davies				Demth
11565	Location	Tomshin			Primary	Topor	Budros		Depth
well	Latitude Longitude	or		Year	of .	graphic	realogic	Lith-	well
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
	401400 0802039	Honewell	Clayton Daniel	1976	Ħ	 म	317WSNGM	IMSN	105
838	401647 0802430	Cross Creek	Bongiorni Frank	1983	H	5	3211000		220
839	401555 0802352	Cross Creek	Fowler Albert	1982	H H	s	317WBRGL		120
840	401557 0802349	Cross Creek	McClain Richard	1979	H	s	317WSNGM		100
841	402106 0801403	Cecil	Lukon, Raymond	1981	H	H	321PBRG		150
842	402053 0801426	Cecil	Langhurst. Chris	1982	н	D	321PBRG		65
843	401925 0801315	Cecil	Yerkey, Robert	1980	Н	v	321PBRG		73
844	401941 0801053	Cecil	Haye, Marleen	1978	Н	s	321PBRG		115
845	401941 0801054	Cecil	Yarmeak, Joe		н	s	321PBRG		23
846	402053 0801401	Cecil			Н	H	321PBRG		210
847	402123 0801944	Smith	Winters, Joe	1981	H	v	321PBRGL		55
848	402126 0801946	Smith	Shimon, John	1984	н	v	321PBRGL		30
849	401922 0802126	Smith	Community Medical Center	1978	P	v	321UNNN		
850	401924 0802130	Smith	Community Medical Center	1977	ប	v	321UNNN		150
851	402207 0802325	Smith	Gavatorta, Steve	1979	С	v	321PBRGC		75
852	402204 0801947	Smith	Roach, David	1975	н	v	321PBRGL		165
853	400323 0800857	East Finley	Raney, Calvin	1978	н	S	317WSNG		120
854	400220 0800842	East Finley	Glover, Kenneth	1970	Н	S	317WSNG	SNDS	.90
855	402102 0802703	Jefferson	Scopel, Jack	1972	н	S	321PBRGU		92
856	402005 0802739	Jefferson	Gillespie, Dick	1975	Н	н	321PBRGU		150
857	402025 0802807	Jefferson	Riggs, Herbert	1970	H	н	321UNNN		140
858	402034 0802658	Jefferson	Vincenti, Robert	1972	н	S	321FBRGU		105
859	402121 0803002	Jefferson		1975	H	S	321RDSN		81
8 60	402120 0802959	Jefferson			U	S	321RDSN		105
861	402112 0803022	Jefferson	Jeffery, Dwight	1975	н	S	321,RDSN		111
862	401303 0801835	Canton	Bradford, John	1978	н	Н	321UNNN		180
863	401250 0801805	Canton	Griffin, Charles	1972	н	н	321FBRGU		150
865	401255 0801745	Canton	Kelley, Marie	1978	н	Н	321PBRGU		
8 66	401254 0801751	Canton	Carver, George	1979	H	S	321UNNN		200
8 67	401304 0801859	Canton	Poland, John	1985	H	S	317WBRGL		200
868	401851 0801220	Canton	Donaldson, Gary	1974	H	v	321UNNN		52
869	401738 0801414	Chartiers	Gossett, Wayne	1979	н	н	321UNNN		180
870	401722 0801408	Chartiers		1982	S	W	321PBRG		90
871	401408 0801334	Chartiers	Warcholak, Ted	1979	Н	S	321CSLM		125
872	401535 0801401	Chartiers		1965	Н	v	321CSLM		225
873	401346 0801535	Chartiers		1983 -	H	H	321UNNN		150
. 874	401350 0801536	Chartiers	Andy, Frank		U	Н	317WBRGL		114
875	401348 0801535	Chartiers			Н	H	317WBRGL		53
876	400610 0795500	California	Truskey, Elmer	1957	H	S	321FSPT		130
877	401007 0795613	Carroll	Fragello, Palmer		н	S	321PBRG		165
878	401009 0795811	Carroll	Panizzi, L eo	1961	U	S	321SCKL		150
879	401246 0801149	North Strabane		1971	С	v	321RDSN		165
880	401415 0801115	North Strabane	Binjotto, Phillip	1974	Н	S	317WBRGL		220
881	401426 0800903	North Strabane	Chambers, Carl	1960	H	v	321PBRGU		080
882	401334 0800828	North Strabane	Sprence, Joe	1976	Н	v	321PBRGU		108
883	401344 0800644	North Strabane			Н	S	317WBRGL		187
885	401511 0800634	North Strabane		1983	Н	S	317WBRGL		160
886	401439 0800416	Nottingham	Obringer, James	1978	н	S	321UNNN		130

					Measured yield			Field water quality				
				Date	Reported	i Specific	Dis-		Specific	Hq		
С	asing	Depth to water-	Water	water	yield	capacity	charge		- conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	mįn)	measured	(uS/cm)	units)	(deg C)	number
		34/ 85	9 19	08-17-84	2			08-17-84	535	6 5	24 0	837
			82 10	08-22-84				08-22-84	820	7.8	20.5	838
120	6	38/ 86	39 20	08-22-84	15			08-22-84	580	6.8	28.5	839
		65	6.65	08-22-84				08-22-84	570	6.8	24.0	840
		90	70.30	05-20-85				05-20-85	745	6.8	22	841
21	6	35	15.90	05-20-85	20			05-20-85	850	7	17	842
			28.80	05-20-85	5			05-20-85	1.000	6.8	17	843
23	8	70	47.00	05-20-85	1			05-20-85	6 70	6.9	22.5	844
			16.20	05-20-85				05-20-85	530	6.6	22	845
		25/155	93.80	05-20-85	<1							846
20	8	25	7.59	05-21-85	20			05-21-85	850	7	16	847
			12.80	05-21-85				05-21-85	825	6.7	15.5	848
			5.41	05-21-85								849
			3 02	05-21-85								850
			14.00	05-21-85				05-21-85	1.400	6.2	21	851
		20/125/135	56 90	05-21-85	10			05-21-85		7 3	15	852
		100			4			05-22-85	510	6 8	21 5	853
		40/ 65	68 30	05-22-85	6			05-22-85	490	6.7	21	854
27	8	40	31 20	05-23-85	2			05-23-85	825	6.5	20	855
		90	70 00	05-23-85				05-23-85	590	6 9	17	856
			70 00	05-23-85		_ '		05-23-85	660	6 6	15	857
105	6		35 50	05-23-85	3			05-23-85	590	6.9	17	858
21	8	33/ 50/ 60	41 30	05-23-85	5			05-23-85	575	6 8	16	859
			44 60	05-23-85								860
		43/ 93			2			05-23-85	650	7.1	22.5	861
					1							862
					4			05-20-85		6.9	23	863
			111.00	05-30-85	12	·		05-30-85	700	7.2	19.5	865
			76.80	05-30-85				·				866
			74 50	05-20-85				05-30-85	740	7.3	20.5	867
20	8	21/ 36	5 00	10-04-74		24	10	05-30-85	840	6 9	18	868
			50 30	06-12-85				06-12-85	480	6 5	15 5	869
			48 80	06-12-85				06-12-85	850	7.0	18	870
		50	54 30	06-12-85				06-12-85	1 750	7 5	24 5	871
		180						06-12-85	1,200	7.2	17	872
			84 50	06-12-85								873
			39 50	06-12-85								874
			41 20	06-12-85								875
		86	39 90	06-13-85				06-13-85	690	7	13.0	876
								06-13-85	0800	7 0	2.0	877
			55 90	06-13-85								878
		10/ 20/ 65	69 90	06-14-85	10			06-13-85	5.500	7.2	15.5	879
		TO/ 20/ 01	07.90					09-05-85	1,650	8.6	16	
220	•		117 00	06-14-85				06-14-85	875	6 4	21	880
220	0			UU 14-03				06-14-85	760	6 R	24	881
10		21/65/05	34 00	06-14-05				06-14-85	600	6.8	20 5	882
17			J4.00 	00 I4-03				06-14-85	920	68	19 5	883
			41 90	06-14-95								885
21	Q	50	71 30	00-14-00	20			07-09-85	550		19 5	886
Z 1	0	00	/1.50	01-03-03	20						A	555

Appendix C.--Record of wells--Continued

-

Appendix	CRecord	of	wellsContinued
----------	---------	----	----------------

					Primary				Depth
USGS	Location	Township			use	Topo-	Hydro-		of
well	Latitude Longitude	or		Year	of	graphic	geologic	Lith-	well
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
Ws-886									
888	401358 0800304	Nottingham	Hultz, Ann	1965	н	S	321PBRG		100
889	401234 0800228	Nottingham	Patton. Robert	1974	H	S	321CSLM		110
890	400719 0800154	Somerset	Chippewa Golf Course		С	H	317WBRGL		110
891	400719 0800227	Somerset	Chippewa Golf Course	1975	с	S	317WBRGL		100
892	400616 0800148	Somerset	Puskarach, Frank	1982	н	S	321PBRGU		90
893	400616 0800148	Somerset	Puskarach, Frank	1982	U	S	321PBRGU		120
894	400549 0800041	West Pike Run	Femia, Frank	1977	H	S	317WBRGU		100
895	400302 0795803	West Pike Run	Vitte, Richard	1978	H	v	321PBRGL		90
896	400502 0795757	West Pike Run	Williams, Ronald	1969	Н	S	321RDSN		87
8 97	400510 0795842	West Pike Run	Ames, Francis	1949	Н	Н	321UNNN		105
898	400451 0795906	West Pike Run	Kusman, Gregory	1976	Н	S	321PBRGU		100
899	402720 0802844	Hanover	Cagnon, Merl	1967	Н	S	321CSLM		85
901	401646 0802356	Cross Creek			U	S	321SCKL		23
902	401702 0802346	Cross Creek -		1944	Н	S	321PBRG		100
903	401700 0802348	Cross Creek			Н	S	321UNNN		22
904	401639 0802355	Cross Creek	Bedillon, Warren	1970	Н	S	321UNNN		
905	401640 0802351	Cross Creek			Н	S	321UNNN		100
906	401635 0802351	Cross Creek	Bail, Thomas	1975	н	S	321UNNN		120
907	401647 0802420	Cross Creek	Vettorel, Robert	1977	н	S	317WBRGL		100
908	401638 0802420	Cross Creek	Tranquill, James	1975	Н	v	321UNNN	LMSN	080
909	401646 0802429	Cross Creek	Bongiorni Frank	1974	н	s	321PBRG		120
909	401343 0002429		bongrorni, rrank	2,7,7		5	02112110		
910	401647 0802430	Cross Creek	Bongiorni, Frank	1982	н	S	321PBRG		250
911	401639 0802353	Cross Creek	Badillon, Warren		H	s	321UNNN		
912	401642 0802429	Cross Creek			Н	S	321UNNN		88
		•							
913	401644 0802409	Cross Creek	Rea, Charles	1975	Н	S	321PBRG		100
914	402314 0801517	Robinson	Livingood, Gerald R.	1981	H	V	321PBRG		100
915	402442 0801838	Robinson	Kearns, George	1969	H	H	321CSLM	SNDS	176
916	402709 0802638	Hanover	Cumblidge, Charles	1967	H	S	321CSLM	SHLE	
917	402758 0802250	Hanover	Koerbell	1975	H	5	321GLNS	SNDS	160
918	402553 0802835	Hanover	Shedlock, G.	1982	н	v	JZIGLNS		104
919	402348 0803003	Havover	Speicher, George	1977	н	5	JZIGLNS	SHLE	102

					Measured yield			Field water quality				
				Date	Reported	d Specific	Dis-	<u></u>	Specific	pН		
<u> </u>	asing Diameter (inches)	Depth to water- bearing zone(s) (feet)	Water level (feet)	water level measured	yield (gal/ min)	<pre>capacity (gal/ min/ft)</pre>	charge (gal/ min)	Date measured	conduc- tance (uS/cm)	(stan- dard units)	Temper- ature (deg C)	USGS well number
										• •		
								07-00-95	520	/.1 (E		009
		080						07-09-85	750	6.5		888
		82	52 60	07-11-85				07-11-85		6.7	10	907
		62	JZ.00	07-11-05				07-11-05	600	0./ 	19	090
·		58	58 00	07-11-85	6			07-11-85	570	6 6	13 5	891
		90	29.90	07-11-85				07-11-85	625	6.9	2.4	892
		90/120	32.40	07-11-85								893
		40						07-12-85	700	6.3	19	894
16	6				2			07-12-85	1,200	7	19	895
			32.40	07-12-85			'	07-12-85	825	7	23.5	896
			60.00	00-00-82				07-12-85	370	5.9	26.5	897
21	6	50	<u> </u>		10			07-12-85	725	6.7	26.5	898
								07-30-85	600	6.8	23	899
			21.40	06-15-83				06-15-83	510		11.0	901
			40.20	06-15-83				06-15-83	650	7.8	18.5	902
								08-11-83	660	7.8	21.5	
								08-22-84	565	7.8	21	
								04-17-85	645	7.5	12	
								09-13-85	675	7.7	18	
			16.70	06-15-83				06-15-83	600		16.0	903
			44.00	06-15-83								904
			32.80	06-15-83				06-15-83	0800	9.1	17	905
								08-07-84	825	9.1	20	
								08-22-84	775	9	22.5	
								09-13-85	0800	9	18.5	
		90						06-15-83	560	7.3	16.5	906
			37.40	06-16-83								907
			19.20	06-16-83				06-16-83	700	7.2	16	908
								08-22-84	590	7.2	22	
								09-13-85	640	6.9	22.5	
			52.20	06-16-83				06-16-83	525	7.2	16.5	909
								08-16-83	615	8	18.5	
								08-22-84	690	7.6	19	
								04-17-85	528	7.3	12	
												910
			32.40	06-17-83								911
			22.00	06-17-83				06-17-83	525	7	19	912
								08-07-84	550	7.4	19	
								08-22-84	575	7.1	20	
								09-13-85	445	7.2	20	
			39.60	06-17-83				06-17-83	500		15	913
								09-12-85	690	7.5	19	
			15.80	08-16-83				08-16-83	1,100	7.4	20	914
41	6	145			10			08-19-83	560	7.1	14	915
29	6	43						08-19-83	545	7.4	16.5	916
3 9	6	72	54.60	08-19-83	3			08-19-83	680	8.3	20.5	917
30	6	75				. 52	20	08-19-83	1,400	8.2	18.5	918
2 6	6	125			1			08-19-83	520	7.5	23.5	919

Appendix C.--Record of wells--Continued

173 ·

-

Appendix	CRecord	of	wellsContinued
----------	---------	----	----------------

					-				
					Primary	,			Depth
USGS	Location	Township			use	Topo-	Hydro-		of
well	Latitude Longitude	or	,	Year	of	graphic	geologic	Lith-	well
number	(degrees)	borough	Owner	drilled	water	setting	unit	ology	(feet)
Ws-920	402312 0801516	Robinson	Kalitz Bernard	1981	я	v	321PBRG		130
921	401610 0800345	Peters	Schultz, Kenneth	1978	H	S	321PBRG		120
922	401609 0800340	Peters	Patterson, J.	1975	H	S	321PBRG	LMSN	85
923	401559 0800415	Peters	Moser, E.	1980	н	S	321PBRG	LMSN	148
924	401613 0800251	Peters	Groznik, Louis	1967	H	v	321PBRG	SHLE	50
925	401551 0800945	Peters	Bergmark, Robert	1981	H	s	317WBRGU	COAL	125
926	400232 0801739	Morris	Lindley, John		s	Н	317GREN		185
927	401343 0801109	North Strabane	Shaw, Gene	1983	H	H	317WBRGL		172
928	400615 0800051	North Bethlehem	Conkle, Lois	1962	н	v	317WBRGL		146
929	400250 0801738		Lindley, John		11	v	317GREN		
930	401502 0803045	Independence	Bown, Phil		S	S	321UNNN		100
931	401433 0802538	West Middletown			Н	Н	317GREN		49
932	401204 0802259	Hopewell	Boni, Dino	1983	Н	S	321PBRGU		150
950	402742 0802916	Hanover		1978	н	Н	321CSLM		210
951	402512 0802940	Hanover	Riddle, Paul	1963	н	v	321GLNS		85
952	402212 0802819	Hanover	Ohl. Jane		н	v	321GLNS		60
953	400818 0802935	Donegal	Collelo. Joe	1978	н	Н	317GREN		140
954	400949 0800948	Donegal	Swoager, Sue	1981	н	Н	317WSNGM		120
955	402653 0800954	Donegal	Titzed Donald	1985	н	Н	317WSNGM		150
956	400616 0802713	Donegal	Cortis, L.P.	1978	с	S	317WSNG		150
957	400654 0802700	Donegal		1971	с	v	317WSNG		70
958	400633 0802729	Donegal	Hartzell, Lyle	1978	U	S	317WSNG	LMSN	59
959	400512 0802724	Donegal	Minch	1977	н	Н	317GREN	SHLE	125
960	400439 0802138	East Finley		1973	P	н	317GREN		102
961	400411 0802138	East Finley		1971	н	S	317WSNG		125
962	400418 0802128	East Finley	Lilley Brice	1980	н	S	317GREN		120
963	401042 0800506	Somerset	Tremel Bill	1980	H	н	317WBRGU	SNDS	100
964	401047 0800404	Somerset	Martin Jerry	1981	H H	Н	317WBRGU		190
965	400806 0800133	Somerset	Goofrey Pohert	1954	 H	v	321PBRG		60
966	400816 0800427	Somerset	Hazen Gerald	1972	ਸ	5	32111000		130
700	400816 0800427	Domerset	hazen, Gerald	1972	11	5	5210MM		130
968	400732 0795812	Fallowfield	MacDonald, David	1976	н	S	317WBRGL		90
969	400710 0795801	Fallowfield	Matay, Mike	1980	U	н	317WERG		92
970	400646 0795726	Fallowfield	Koslosky, James	1953	н	v	321UNNN		60
971	400704 0795617	Fallowfield	Greco, Garv		Н	W	321PBRG		60
972	400658 0795640	Fallowfield	Lusk, Bob	1975	Н	v	321RDSN		90
973	400758 0795823	Fallowfield	Voelker, Thomas	1981	Н	S			175

			Measured yield				Field water quality					
				Date	Reported	d Specific	Dis-		Specific	Вq		
с	asing	Depth to water-	Water	water	yield	capacity	charge		conduc-	(stan-	Temper-	USGS
Depth	Diameter	bearing zone(s)	level	level	(gal/	(gal/	(gal/	Date	tance	dard	ature	well
(feet)	(inches)	(feet)	(feet)	measured	min)	min/ft)	min)	measured	(uS/cm)	units)	(deg C)	number
				00.16.00								
			38.80	08-16-83	,							920
21					20			08-25-83	700	7.4	1/	941
27	о 8	40/ 00	22 70	09-02-83	12			09-02-83	830	7.4	20.J	922
27	6	4/ 23/ 31			40			09-02-83	030	7 1	17	923
20	8	£0	55 00	09-02-83				09-02-83	1 170	5.5	10 5	925
			61 50	03-15-84				03-15-84	620	73	12 5	926
			51 60	03-15-84				03-15-84	755	7 1	15 5	927
			79 20	03-15-84				03-15-84	780	8.2	13.5	928
			17 10	03-28-84							10.5	929
			37 40	08-08-84				08-08-84	610	7 4	21 5	930
	•		37.40	00 00 04				10-17-84	595	7.7	18	,20
								05-24-85	620	73	16	
								09-27-85	510	7	15	
			47 10	08-08-84				08-08-84	845	8	17 5	931
								10-17-84	935	73	18	<i>,</i> ,,
								04-23-85	710	7.8	24	
								09-18-85	900	7	19 5	
			21.20	10-31-84				04-23-85	480	7.2	15.5	932
		190	150.00	07-30-85	30			07-30-85	690	6.8	18	950
								09-04-85	650	8.2	19 5	
2.0	10	75	32.70	07-30-85				07-30-85	610	6.9	18	951
								07-30-85	1.150	8.5	19	952
								09-04-85	1,210	8 9	14 5	
								07-31-85	450	7	24	953
		75						07-31-85	620	7.1	31	954
			90.00	05-00-85	15							955
			55.00	07-31-85				07-31-85	1,000	7.1	28	956
			24.60	08-13-85				08-13-85	600	7	22	957
12	8	35	48.40	08-13-85	4							958
20	8	60/105	65.40	08-13-85	8							959
		55			3			08-13-85	620	6.7	24.5	960
		50/ 95			5							961
		100	36.70	08-13-85				08-13-85	475	6.6	28	9 62
20	8	40	64.30	08-14-85	10			08-14-85	725	6.6	22	963
		90	170.00	08-14-85								964
			12.60	08-14-85				08-14-85	810	6.8	25	965
			64.90	08-14-85				08-14-85	660	6.9	25.5	966
								09-05-85	690	7.4	16.5	
		64			3			08-15-85	560	6.8	24.5	968
60	6		20.60	08-15-85				08-15-85	440	6.9	17.5	969
			9.19	08-15-85				08-15-85	680	6.8	25	970
					<1			08-15-85	750	7	18	971
								08-15-85	850	6.9	22.5	972
								09-05-85	835	7.4	18.5	
		100	148.00	08-00-81								9 73

Appendix C.--Record of wells--Continued

-. · .

Appendix D.--Record of springs

Local number: The number that is assigned to identify the spring.

Location map name: U.S. Geological Survey 7-1/2-minute topographic map.

Aquifer code: 317GREN, Greene Formation; 317WSNG, Washington Formation; 317WSNGM, Washington Formation, middle member; 317WSNGL, Washington Formation, lower member; 317WBRGU, Waynesburg Formation, upper member; 317WBRGM, Waynesburg Formation, middle member; 317WBRGL, Waynesburg Formation, lower member; 321UNNN, Uniontown Formation; 321PBRG, Pittsburgh Formation; 321PBRGU, Pittsburgh Formation, upper member; 321SCKL, Sewickley Member of Pittsburgh Formation; 321PBRGL, Pittsburgh Formation, lower member; 321PBRGC, Pittsburgh Coal; 321CSLM, Casselman Formation.

Use of water: H, domestic; S, stock; U, unused.

<u>Permanance</u>: P, perennial.

Improvements: B, boxed basin; C, concrete basin; H, spring house; P, pond; R, pipe; T, trough.

Discharge: gal/min, gallons per minute.

Method discharge measured: C, current meter; E, estimated; V, volumetric.

<u>Specific conductance</u>: μ S/cm, microsiemens per centimeter at 25 degrees Celsius.

<u>Water temperature</u>: deg C, degrees Celsius.

	Location				Primary	Elevation
USGS spring number	Latitude Longitude (degrees)	Quadrangle name	Township or borough	Owner	use of water	of land surface (feet)
SP 10	401708 0802137	Midway	Cross Creek	Cowden	Н	1,200
SP 11 SP 12 SP 13	401232 0802307 400433 0800400 400400 0800545	West Middletown Ellsworth Ellsworth	Cross Creek 	West Buckingham Guza	S H H	1,140 1,300 1,040
SP 33 SP 34 SP 35 SP 36 SP 37	400431 0801038 400426 0801037 400450 0801026 400339 0801022 400415 0801025	400431 Amity Amity Amity Amity	Amwell Amwell Amwell Amwell Amwell	Donahoo Paul Roberts	H H H H	1,030 1,150 1,120 1,110 1,040
SP 38	400454 0801018	Amity	Amwell	Frazee	Н	1,120
SP 39	400430 0801000	Amity	W Bethlehem	Montgomery	Н	1,080
SP 40	400449 0801021	Amity	Amwell	Schwartz	н	1,120
SP 41	395947 0802747	Wind Ridge	West Finley	Anderson	Н	1,330
SP 42	400926 0802217	Washington West	Blaine	Presto	н	1,040
SP 43 SP 44 SP 45	400926 0802221 401308 0802248 401228 0802134	Washington West West Middletown Washington West	Blaine Hopewell 	Till Yilit 	H H S	1,020 1,220 1,150
SP 46 SP 47 SP 48 SP 49 SP 50	401248 0802138 401305 0802127 401246 0802148 401305 0802040 401258 0802047	Washington West Washington West Washington West Washington West Washington West	Hopewell Hopewell Hopewell Hopewell	 Quarture	S S S S S	1,210 1,120 1,110 1,140 1,140
SP 51 SP 52 SP 53 SP 54 SP 55	401309 0802028 401310 0802011 401211 0802239 401219 0802237 401225 0802231	Washington West Washington West West Middletown West Middletown West Middletown	Hopewell Hopewell Hopewell Hopewell Hopewell	Quarture Quarture Richmond Richmond Richmond	บ บ ร ร ร	1,140 1,125 1,120 1,190 1,130
SP 56 SP 57 SP 58 SP 59 SP 60	401216 0802235 401242 0802411 401244 0802354 401303 0802354 401305 0802351	West Middletown West Middletown West Middletown West Middletown 1180	Hopewell Hopewell Hopewell Hopewell Hopewell	Richmond Miller Miller Brownlee	S H S H S	1,125 1,170 1,080 1,190 1,180
SP 61 SP 62 SP 63 SP 64 SP 65	401256 0802346 401158 0802417 401351 0802304 400236 0802350 401723 0801409	West Middletown West Middletown West Middletown Claysville Canonsburg	Hopewell Hopewell Hopewell East Finley Chartiers		H U U H H	1,140 1,000 1,280 1,110 1,140
SP 66 SP 67 SP 68 SP 69 SP 70	400517 0795524 400610 0795459 400839 0795825 401005 0795811 400528 0795924	California California Monogahela Monogahela California	California California Fallowfield Carroll West Pike Twp	Russell Truskey Lazzari Yanizzi Weaver	P S H H U	980 1,200 950 900 1,080
SP 71 SP 72	400447 0795907 400331 0795505	California California	West Pike Run California		U U	1, 03 0 940
SP 73 SP 74	402714 0802916 402500 0802830	Burgettstown Burgettstown	Hanover Hanover		s U	1,230 1,120
SP 75 SP 76 SP 77 SP 78 SP 79	402611 0802449 402812 0802314 400649 0802632 400514 0802731 400603 0802918	Burgettstown Burgettstown Claysville Claysville Claysville	Hanover Hanover Donegal Donegal Donegal	 Clark Degarmo Deitt	H U H H S	1,200 1,020 1,100 1,280 1,310

Appendix D.--Record of springs

-

.

		Measurements of discharge Field water quality measurements								
Topo- graphic setting	Hydro- geologic unit	Date measured	Rate (gal/ min)	Method used	Perm- an- ence	Date measured	Specific conductance (µS/cm)	Hardness (mg/L as CaCO ₃)	Temper- ature (deg C)	USGS spring number
v	321UNNN 317WBRGM	06-15-83 08-11-83 	5 2		P P	06-15-83 08-11-83 08-05-83	520 550 520		16 12.5 24.5	SP 10 SP 11
s s	317GREN 317WBRGU				P P	08-10-83	285		26	SP 12 SP 13
S S S S S	317WBRGL 317WSNGL 317WSNGM 317WBRGU	 	 		 	05-23-84 05-24-84 05-24-84 05-25-84	415 380 420 550	 	21.5 28 22 15.5	SP 33 SP 34 SP 35 SP 36 SP 37
S		05-31-84 10-25-84 05-30-85	<1 <1 <1	V V V	 	05-31-84 10-25-84 05-30-85	470 515 500	 	18 17 19	SP 38
S	317WBRGU	09-27-85 05-31-84	<1 4	v v		09-27-85 05-31-84	490 290		18 26.5	SP 39
S	317WSNGL	10-25-84 05-30-85 09-27-85 05-31-84 10-25-84	<1 <1 <1 5 <1	V V V V V		10-25-84 05-30-85 09-27-85 05-31-84 10-25-84	475 495 430 380 490		18 17 18 18 15	SP 40
S	317GREN	 06-01-84 09-21-84 05-24-85 09-26-85	 4 <1 1 <1	v v v v	 	09-27-85 06-01-84 09-21-84 05-24-85 09-26-85	480 565 670 650 635		18 11 14.5 11 14	SP 41
S	317WBRGU					08-02-84	515		26	SP 42
S S S	 317WSNGL 317WBRGL	 08-00-84 03-05-85	 7 12			08-01-84 08-16-84 03-05-85	475 725 580		26 35 7.5	SP 43 SP 44 SP 45
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	317WBRGU 317WBRGL 317WBRGL	03-05-85 03-05-85 03-05-85	3 1 5 			 03-05-85 03-05-85 	 385 585 250		 7 5.5 	SP 46 SP 47 SP 48 SP 49 SP 50
S S S W	317WBRGL 317WBRGL 317WBRGU 317WBRGL 317WBRGL	03-05-85 03-05-85 03-07-85 03-07-85 03-07-85	1 2 2 1	 	 	03-05-85 03-05-85 03-07-85 03-07-85 03-07-85 03-07-85	280 420 580 560 385		3 7 9.5 9	SP 51 SP 52 SP 53 SP 54 SP 55
S S S S S	317WBRGU 317WSNGM 317WBRGL 317WBRGU 317WBRG	03-07-85 03-07-85 03-07-85 00-00-77	3 1 11 15		 	03-07-85 03-07-85 03-07-85 03-07-85	500 745 800 530		9 12 8 11	SP 56 SP 57 SP 58 SP 59 SP 60
S S S W	317WBRGU 321UNNN 317WSNGM 317WSNG 321UNNN	03-07-85 03-07-85 03-07-85 05-22-85 06-12-85	18 <1 3 <1 3	 v v	 P P	03-07-85 03-07-85 03-07-85 05-22-85 06-12-85	520 320 675 365 650		9 10 9 11.5 14	SP 61 SP 62 SP 63 SP 64 SP 65
S W S S V	321PBRGC 321PBRGU 321PBRGU 321SCKL 317WBRGL	06-13-85 06-13-85 06-01-85 06-13-85 *07-12-85	40 <1 1 2 3	 V V V	P P P P	06-13-85 06-13-85 06-13-85 06-13-85 07-12-85	1,120 520 690 625 660	 	12.5 14 14.5 13 14	SP 66 SP 67 SP 68 SP 69 SP 70
V S	321PBRGU 321PBRGL	07-12-85 07-12-85	3 20	v 	P P	07-12-85 07-12-85	675 1,400		13 12.5	SP 71 SP 72
S S	321CSLM 321CSLM	09-05-85 07-30-85 07-30-85	12 <1 3	v v	P 	09-05-85 07-30-85 07-30-85	1,500 470 470		12 22 15	SP 73 SP 74
s s ¥	321PBRGL 321CSLM 317WSNG 317GREN 317GREN	07-30-85 07-30-85 07-31-85 08-13-85 08-13-85	2 1 <1 <1 1	V V E V	P P P P	07-30-85 07-30-85 07-31-85 08-13-85 08-13-85	900 700 500 568 460	 	20 14 19.5 18 22	SP 75 SP 76 SP 77 SP 78 SP 79

Appendix D.--Record of springs--Continued

USGS spring number	Location Latitude Longitude (degrees)	Quadrangle name	Township or borough	Owner	Primary use of water	Elevation of land surface (feet)
SP 80 SP 81 SP 82 SP 83 SP 91	400406 0802920 400414 0802401 400250 0802313 400733 0795613 401650 0802346	Claysville Claysville Claysville California Avella	East Finley East Finley Fallowfield	 	H V U H	1,220 1,270 1,340 1,170 1,180
SP 92 SP 93	401709 0802418 401630 0802416	Avella Avella	 Cross Creek	Ihnat	H H	1,100 1,100
SP 94 SP 95	400152 0801721 400314 0800527	Prosperity Ellsworth	Morris W. Bethlehem	Shriver Dunn	H H	1,060 960
SP 96	400233 0801740	Prosperity	Morris	Lindley	Н	1,180
SP 97	400239 0 801746	Prosperity	Morris	Lindley	S	1,060

Appendix D.--Record of springs--Continued

		Meas	urements	of dischar	ge	Field	ents			
Topo- graphic setting	Hydro- geologic unit	Date measured	Rate (gal/ min)	Method used	Perm- an- ence	Date measured	Specific conductance (µS/cm)	Hardness (mg/L as CaCO ₃)	Temper- ature (deg C)	USGS spring number
 s	317GREN	08-13-85	1	E	P					SP 80
š	317GREN	08-13-85	<1	v		08-13-85	240		14	SP 81
ŝ	317GREN	08-13-85	2	v	P	08-13-85	420		13	SP 82
ŝ	321PBRG	08-15-85	<1	ý	P	08-15-85	790		17	SP 83
ŝ	317WSNGM					06-15-83	500		11	SP 91
s	317WBRGL					06-16-83	660		21.5	SP 92
S	321UNNN	06-17-83	1			06-17-83	560		14	SP 93
-		08-16-83	<1			08-16-83	550		18	
		08-22-84	<1			08-22-84	590		22	
		04-17-85	2			04-17-85	550		11	
		09-13-85	<1			09-13-85	535		17	
S	317GREN	08-12-83	1		P	08-12-83	530		20	SP 94
Ś	317WBRGM	09-07-83	3			09-07-83	650		10.5	SP 95
		04-24-85	7			04-24-85	560		10	
		09-27-85	2			09-27-85	605		13.5	
s	317GREN	03-15-84	7	v	P	03-15-84	480		4.5	SP 96
		09-02-84	<1	v		09-20-84	550		16	
		04-24-85	5	v		04-24-85	560		16	
		09-27-85	<1	v		09-27-85	445		16	
W	317GREN	03-15-84	40	С	P	03-15-84	265		3	SP 97
		09-20-84	2	v		09-20-84	345		15.5	
		04-24-85	9	v		04-24-85	240		25	
		09-27-85	<1							

Appendix D.--Record of springs--Continued

--

-

Appendix E.--Chemical analysis of ground water

....

[Geologic unit explanation is in Appendix C; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; *C, degrees Celsius; mg/L, milligrams per liter; <, less than; --, no data]

Local iden- tifier	Date of sample	Geologic unit	Depth of well, total (feet)	Depth below land surface (water level) (feet)	Spe- cific conduct- ance (µS/cm)	pH (stand- ard units)	Temper- ature (°C)	Acidity (mg/L as H)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)
19 23 31 41 61	09-25-26 09-28-26 09-16-26 09-30-26 09-22-26	321MNGL 317GREN 112ALVM 321MNGL 321CNMG	90.00 64.00 28.00 107 100	7.00 20.00 2.00 45.00 5.00		 	11.0 11.0 11.0 11.0 10.0		2.8 98 5.3 83 36	2.1 30 3.9 18 9.0	440 12 140 12 34
74 92 93 100	09-30-26 08-11-83 09-22-26 09-22-26 09-21-26	321UNNN 321CNMG 321CNMG 321CNMG	126 60.00 48.00 90.00	36.00 .00	880 	7.1	11.5 22.0 10.0 10.0 11.0	 	62 110 64 82 510	17 24 30 30 140	34 34 12 97 27
113 130 137 142 155	09-21-26 09-25-26 09-23-26 10-29-26 07-01-71	321CNMG 317GREN 321CNMG 321MNGL 317WSNG	87.00 100 44.00 200 160	45.00 .00 60.00 38.00	 518		12.0 11.0 13.5 12.0		73 120 110 63 15	27 7.3 22 18 4.3	32 8.2 8.2 240 100
156 181 182 189	08-23-83 11-12-67 08-19-83 08-26-83 08-30-84	317WSNĠ 317WSNG 317WBRGL 317WBRGL 317WBRGU	160 55.00 92.20 74.20 32.00	 30.00	490 347 520 540 555	7.9 8.3 7.0 7.4 7.4	12.0 14.0 15.0 13.5	0.1 .9 .3 .3	27 35 87 76 75	6.6 16 8.3 13 18	83 18 6.5 4.3
197 205 209 219 222	08-22-84 08-24-83 09-07-83 09-04-85 09-02-83	321UNNN 317WBRGL 317WBRGM 317WSNGM 317WSNGL	100 90.90 110 100 88.00	15.83 28.03 56.40	640 580 600 605 825	7.5 7.2 6.9 7.7 7.4	20.0 15.0 17.5 19.0 16.5	.3 .6 .8 .2 .5	55 77 84 80 110	11 14 13 25 29	60 23 17 5.8 13
240 244 265 269 271	08-11-83 08-07-84 08-16-83 08-07-84 08-18-83	321PBRGU 321SCKL 321UNNN 321UNNN 317WSNGL	48.00 200 99.20 40.00 176	84.97 12.36 	4,400 1,180 850 780 520	8.0 7.7 7.3 7.6 6.8	16.5 16.0 13.0 19.0 12.0	.2 .8 .1 1.9	12 55 110 92 96	6.1 22 27 21 14	900 150 11 25 5.3
289 290 291 292 297	09-02-83 09-02-83 09-02-83 08-23-84 09-07-83	321PBRGU 321PBRGU 321PBRGU 321UNNN 317WSNGU	80.00 85.00 77.00 90.00 125	 18.87 	1,630 1,380 410 565 1,850	8.8 8.6 7.8 7.2 7.0	19.0 16.5 19.5 21.0 23.5	 .2 .7 1.7	2.0 5.4 58 69 190	.88 2.1 12 14 130	370 310 8.6 26 47
300 301 303 304 314	09-07-83 09-07-83 08-17-83 09-07-83 08-17-83	317WSNGU 317WBRGL 317WBRGM 317WBRGL 321PBRGR	135 120 64.60 110 78.00		1,550 640 425 900 675	7.2 7.3 6.7 8.4 7.4	16.0 18.0 12.0 15.0 13.5	.9 .6 1.3 .4	150 76 65 9.3 71	76 17 16 3.5 23	60 26 13 200 41
320 322 324 403 408	09-07-83 09-05-84 08-29-85 08-07-84 08-31-84	317GREN 317WSNGM 321MRGN 317WBRGL 317GREN	127 127 301 165 20.83	 92.72 17.10	680 690 1,500 840 875	7.4 7.3 7.4 7.6 7.1	21.0 12.0 12.5 21.0 14.0	.3 .6 .5 .4	70 87 130 79 110	16 28 48 18 17	40 14 120 65 30
409 412 421 430	08-31-84 09-07-83 08-31-84 08-11-83 08-06-84	317GREN 317WSNGM 317WBRGU 321PBRGU 321PBRGU	20.83 120 35.00 150	 132.30 <0.00 92.53	1,100 545 525 610	7.1 7.2 7.6 7.6	19.5 16.5 18.0 16.5	.8 .6 .2	100 52 60 47	53 8.2 17 19	 52 50 2 8 46
438 493 498 503 544	08-11-83 08-16-83 08-11-83 08-06-84 08-06-84	321PBRG 321PBRGU 321UNNN 317WSNGL 317WBRGL	153 140 148 165 75.00	16.83 38.25	450 670 600 780 810	7.1 7.2 7.1 7.2 7.4	18.0 19.5 20.0 14.0 18.5	 . 8 . 5	110 94 88 110 92	33 22 18 19 22	27 15 15 17 15
555 576 586 592 594	08-11-83 08-09-84 08-12-83 08-09-84 08-16-83	321UNNN 317WSNGL 317WBRGU 317WSNGM 317WSNGU	76.83 90,00 54,00 175 110	19.40 59.78 61.10	640 440 840 725 2,500	7.3 7.3 7.0 8.6 7.2	15.5 13.5 19.0 14.5 16.5	.4 	99 73 110 14 46	17 3.6 15 3.0 5.4	8.6 4.0 41 140 460

Appendix E.--Chemical analysis of ground water--Continued

[Geologic unit explanation is in Appendix C; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; <, less than; --, no data]

Potas- sium, dis- solved (mg/L as K)	Bicar- bonate fet-fld (mg/L as ECO ₃)	Car- bonate fet-fld (mg/L as CO ₃)	Alka- linity field (mg/L as CaCO ₃)	Sulfide, total (mg/L as S)	Sulfate, dis- solved (mg/L as SO ₄)	Chloride, dis- solved (mg/L as Cl)	Fluoride, dis- solved (mg/L as F)	Silica, dis- solved (mg/L as SiO ₂)	Solids, residue at 180 °C, dis- solved (mg/L)	Solids, sum of constit- uents, dis- solved (mg/L)	Local iden- tifier
9.6 3.5 3.2 2.2 2.4	870 360 390 330 220	 	711 292 318 273 184	 	3.8 86 5.0 23 5.3	200 6.4 12 2.6 9.0		7.3 17 16 26 17	1,120 436 382 320 222	1,100 430 380 330 220	19 23 31 41 61
4.8 2.1 1.8 5.9 12	260 290 300 380 240	 	212 240 250 314 198		62 110 46 200 1,600	18 81 3.7 18 16	0.20	16 12 10 17 24	330 621 321 637 2,590	340 520 320 640 2,500	74 92 93 100
5.0 3.2 3.7 6.1 1.7	45 270 290 480 330	 0	37 223 235 391 268	 `	210 61 130 77 3.7	38 20 1.4 220 1.5	 -60	12 12 10 17 9.8	495 411 439 898 318	490 410 420 880 300	113 130 137 142 155
1.2 1.3 1.0 2.3	310 150 220 230 270	4	250 129 180 190 220	<0.5 <.5 <.5 <.5	18 36 55 54 49	3.2 18 6.6 5.6 4.7	.30 .20 .20 .10	11 11 10 7.2	346 267 359 333	300 280 280 290	156 181 182 189
1.0 2.1 1.0 1.3 1.5	320 310 250 320 380		270 250 200 260 310	<.5 <.5 <.5	32 52 68 36 82	24 4.9 26 3.1 21	.60 .10 .20 .10 .20	13 12 15 13 13	362 365 342 332 460	350 340 350 320 460	197 205 209 219 222
2.9 2.3 2.4 1.0 1.3	540 300 370 270 270		440 250 310 220 220	<.5 <.5 <.5 <.5	2.9 62 26 81 97	1,200 180 62 62 4.5	4.6 .60 .30 <.10 .20	6.8 9.2 15 9.5 12	2,460 576 475 516 431	2,400 630 440 420 370	240 244 265 269 271
1.0 1.1 1.5 1.4 3.9	750 630 240 310 510	26 14 	660 540 200 260 420	<.5 <.5 <.5 <.5 <.5	.5 1.2 8.1 48 600	130 120 2.9 3.7 48	7.0 5.5 .30 .20 .20	7.0 8.5 21 16 9.1	982 779 219 337 1,390	940 790 230 330 1,300	289 290 291 292 292
3.4 1.9 1.5 1.1 1.3	440 340 190 550 350		360 280 160 460 290	<.5 <.5 .6 <.5	260 33 56 4.1 55	120 11 19 23 5.5	.20 .30 .20 1.0 .30	13 14 16 10 8.8	968 344 359 534 408	900 350 280 530 380	300 301 303 304 314
4.1 1.1 6.1 1.6 .80	180 370 280 370 250		150 300 230 300 210	<.5 <.5 <.5 <.5 <.5	72 62 530 73 130	49 11 16 46 .00	.20 <.10 .20 .50 .20	12 10 12 12 9.2	388 435 1,000 396 5 53	350 400 1,000 480 420	320 322 324 403 408
3.9 1.2 1.7 2.0	370 320 270 280	 	300 260 220 230	<.5 <.5 <.5	200 30 40 53	35 3.1 12 23	.20 .60 .30 .20	9.5 17 15 9.4	654 322 317 326	640 320 310 340	409 412 421 430
2.7 1.6 1.2 1.3 2.3	380 280 280 370 310	 	310 230 230 300 250	 <.5 .5	70 63 57 85 85	63 50 26 10 20	.30 .30 .40 .10 .20	19 13 11 10 11	566 396 401 401 391	510 400 350 430 400	438 493 498 503 544
1.0 .50 1.9 .60 2.9	220 180 250 280 540	 12	180 140 200 310 440	<.5 <.5	49 67 52 26 1.5	59 5.7 120 24 530	.20 .10 .20 .70 0.60	12 9.5 15 10 8.7	414 280 562 444 1,360	350 250 480 380 1,300	555 576 586 592 594

183

-

Appendix E.--Chemical analysis of ground water--Continued

[Geologic unit explanation is in Appendix C; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; <, less than; --, no data]

Local iden- tifier	Date of sample	Geologic unit	Depth of well, total (feet)	Depth below land surface (water level) (feet)	Spe- cific conduct- ance (µS/cm)	pH (stand- ard units)	Temper- ature (°C)	Acidity (mg/L as H)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)
601 609 618 620 626	08-09-84 08-09-84 09-02-83 08-23-84 08-30-84	317GREN 317WBRGL 317WSNGM 317WBRGL 317WSNGM	20.70 188 90.00 145 150	10.51 35.30 33.46	540 1,950 2,900 470 760	7.3 8.7 8.4 7.4 7.3	20.0 21.5 18.0 15.0 20.0	0.4 .7 .4	74 4.3 2.6 76 64	11 1.5 .90 7.5 23	11 400 650 5.1 50
636 652 680 696 715	08-08-84 08-30-84 08-30-84 08-30-84 08-23-84	317WSNGM 317WSNGM 321UNNN 317WBRGL 317GREN	250 60.00 60.00 80.00 32.00	80.58 24.70 20.93 52.11 28.60	635 670 1,140 565 435	7.6 7.2 8.2 7.3 7.2	19.0 16.5 12.5 16.0 21.5	.3 .6 .0 .4 .3	69 85 7.1 78 65	14 18 3.2 14 6.8	38 15 240 4.6 7.4
727 735 764 775 798	08-23-84 08-08-84 08-22-84 08-22-84 08-22-84 08-22-84	317GREN 317WBRGL 317WBRGL 321UNNN 317WBRGU	22.80 <30.00 129 75.00 200	19.00 4.90 25.15 37.12 82.69	475 925 770 925 565	7.4 7.1 7.4 7.2 8.0	17.5 20.0 19.0 16.0 20.5	.1 1.1 .7 1.1 .1	63 140 61 84 46	7.9 13 16 21 21	12 33 88 73 39
820 879 886 902 905	08-22-84 09-05-85 09-05-85 08-11-83 08-07-84	317WSNGM 321RDSN 321UNNN 321PBRG 321UNNN	180 165 130 100 100	96.54 63.10 76.50 41.65 33.20	605 1,650 520 660 825	7.5 8.6 7.1 7.8 9.1	18.0 16.0 19.5 21.5 20.0	_ 4 _ 4 	69 4.2 63 25 1.5	22 2.7 15 15 .59	20 350 11 100 180
909 912 914 915 917	08-16-83 08-07-84 08-16-83 08-19-83 08-19-83	321PBRG 321UNNN 321PBRG 321CSLM 321GLNS	120 88.38 100 176 160	54.81 21.10 15.81 54.65	615 550 1,100 560 680	8.0 7.4 7.4 7.1 8.3	18.5 19.0 20.0 14.0 20.5	. 4 	27 72 120 72 14	7.0 12 24 22 4.5	110 21 68 11 150
918 919 921 922 923	08-19-83 08-19-83 08-25-83 08-25-83 09-02-83	321GLNS 321GLNS 321PBRG 321PBRG 321PBRG	104 165 120 85.00 148	 22.69	1,400 520 960 720 830	8.2 7.5 7.4 7.4 7.0	18.5 23.5 17.0 20.5 19.0	 1.0	4.7 32 120 95 110	1.3 8.8 26 20 27	310 81 23 20 18
924 925 930 931 950	09-02-83 09-02-83 08-08-84 08-08-84 09-04-85	321PBRG 317WBRGU 321UNNN 317GREN 321CSLM	50.00 125 100 49.16 210	55.00 37.39 47.10	930 1,170 610 845 650	7.1 6.8 7.4 8.0 8.2	17.0 10.5 21.5 17.5 19.5	.8 1.9 .4 .1	93 140 80 120 12	42 33 22 16 3.4	32 30 6.7 22 130
952 955 966 972 SP 10	09-04-85 09-06-85 09-05-85 09-05-85 08-11-83	321GLNS 317WSNGM 321UNNN 321RDSN 321RDNNN	60.00 150 130 90.00	83.40 68.50 55.30	1,210 650 690 835 550	8.9 7.4 7.4 7.4 7.9	14.5 13.0 16.5 18.5 12.5	 .5 .8 	4.6 93 64 100 78	1.6 20 20 35 19	250 5.6 47 13 13
SP 11 SP 72 SP 93 SP 94 SP 95	09-02-83 09-05-85 08-16-83 08-12-83 09-07-83	317WBRGM 321PBRGL 321UNNN 317GREN 317WBRGM	 		520 1,500 550 530 650	7.3 7.4 7.9 7.9 7.5	19.5 12.0 18.0 20.0 10.5	. 4 . 6 . 4	84 140 110 95 60	12 55 4.9 10 11	3.4 92 2.4 4.2 59

4

Appendix E.--Chemical analysis of ground water--Continued

.

[Geologic unit explanation is in Appendix C; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; *C, degrees Celsius; mg/L, milligrams per liter; <, less than; --, no data]

Potas- sium, dis- solved (mg/L as K)	Bicar- bonate fet-fld (mg/L as HCO ₃)	Car- bonate fet-fld (mg/L as CO ₃)	Alka- linity field (mg/L as CaCO ₃)	Sulfide, total (mg/L as S)	Sulfate, dis- solved (mg/L as SO ₄)	Chloride, dis- solved (mg/L as Cl)	Fluoride, dis- solved (mg/L as F)	Silica, dis- solved (mg/L as SiO ₂)	Solids, residue at 180 °C, dis- solved (mg/L)	Solids, sum of constit- uents, dis- solved (mg/L)	Local iden- tifier	
1.3 1.1 1.0 1.3 1.9	230 680 800 230 270	19 2 	190 590 660 190 220	<0.5 <.5 <.5 <.5 <.5	42 2.0 .8 51 60	20 390 550 4.2 70	.10 2.5 2.4 .10 .20	10 8.1 7.0 10 11	316 1,110 1,590 305 467	280 1,200 1,600 270 410	601 609 618 620 626	
2.8 1.3 1.8 1.7 .70	200 270 470 270 190	 	160 220 380 220 150	<.5 <.5 <.5 	86 70 .6 50 46	43 31 130 6.7 7.1	.30 .20 1.1 .20 .10	9.3 14 8.7 14 7.4	450 381 634 340 290	360 370 620 300 230	636 652 680 696 715	
6.7 1.9 3.1 3.0 1.9	180 340 220 450 340	 	150 280 180 370 280	<.5 <.5 <.5 <.5	53 140 1.7 47 28	9.5 47 49 58 3.7	.10 .20 .20 .20 .30	9.8 11 17 16 14	311 603 510 397 306	250 550 340 520 320	727 735 764 775 798	
1.8 1.2 1.3 2.1 .60	330 840 160 380 460		270 720 130 310 380	<.5 <.5	31 92 83 21 6.6	13 70 15 21 36	.20 2.5 .10 .70 1.6	21 7.8 13 11 8.4	336 948 301 396 469	340 940 280 380 530	820 879 886 902 905	
1.8 1.5 1.7 2.1 1.0	390 310 320 200 430	 	320 250 270 160 350	<.5 <.5 <.5	27 40 160 100 11	4.0 3.2 93 20 2.4	.80 .30 .20 .10 1.1	10 11 10 13 8.8	396 266 690 381 419	380 310 630 340 400	909 912 914 915 917	
1.1 1.4 1.4 1.2 1.4	480 300 270 280 330		390 250 220 230 270	<.5 <.5 <.5 <.5 <.5	3.4 22 77 55 76	210 5.8 120 55 53	2.7 .50 .20 .30 .20	6.9 14 16 17 12	734 288 539 386 526	780 310 520 400 460	918 919 921 922 923	
1.5 3.5 1.7 2.4 1.5	380 310 310 230 360	 	310 250 250 190 290	<.5 <.5 <.5 <.5	68 130 70 92 31	73 130 .00 4.0	.30 .40 .20 .10 .40	9.6 14 12 9.9 11	559 718 340 512 373	510 630 350 380 370	924 925 930 931 950	
.50 1.4 2.1 1.6 1.6	390 320 300 260	 	360 260 240 340 210		5.1 54 84 55 71	160 8.5 9.7 27 5.0	1.9 .10 .20 .10 .30	7.0 13 9.8 14 12	682 302 381 381 380	620 350 380 450 330	952 955 966 972 SP 1 0	
1.1 3.4 .70 .80 1.4	240 350 300 260 330		200 280 240 210 270	<.5 <.5	52 440 50 44 58	7.6 19 2.2 6.1 2.6	.40 .20 .20 .20 .30	11 6.4 8.7 10 10	303 984 267 304 356	290 930 330 300 360	SP 11 SP 72 SP 93 SP 94 SP 95	

-

,

Appendix F.--Trace-element analyses of ground water

[See Appendix C for explanation of geologic unit; μ g/L, micrograms per liter; <, less than; --. no data]

Local iden- tifier	Date of sample	Geologic unit	Alum- inum, dis- solved (μg/L as Al)	Arsenic, dis- solved (μg/L as As)	Barium, dis- solved (μg/L as Ba)	Boron, dis- solved (μg/L as B)	Cadmium, dis- solved (μg/L as Cd)	Chromium, hexa- valent, dis- solved (µg/L as Cr)	Cobalt, dis- solved (μg/L as Co)	Copper, dis- solved (µg/L as Cu)	Iron, total recov- erable (μg/L as Fe)
19	09-25-26	321MNGL									
23	09-28-26	317GREN									
31	09-16-26	112ALVM 321MNG									
61	09-22-26	321CNMG									
74	09-30-26										
	08-11-83	321UNNN				70					130
92	09-22-26	321CNMG									
100	09-21-26	321CNMG									
113	09-21-26	321CNMG									
130	09-25-26	317GREN									
137	09-23-26	321CNMG									
155	07-01-71	317WSNG									
	08-23-83	317WSNG	<10	3		100	<1	<1	5	1	1,900
156	11-12-67	317WSNG	1,200								
181	08-19-83	317WBRGL	10			30	<1	<1			240
189	08-30-84	317WBRGU				<20					3,300
197	08-22-84	321UNNN				140					460
205	08-24-83	317WBRGL	1.000	3		50	<1	1	7	2	17.000
209	09-07-83	317WBRGM				<20					250
219 222	09-04-85 09-02-83	317WSNGM 317WSNGL				20 70					20 100
240	08-11-83	321 PBRGU				490					390
240	08-07-84	321SCKL				150					110
265	08-16-83	321UNNN	10	3		60	<1	1	5	6	2,100
269	08-07-84	321UNNN				40					110
2/1	08-18-83	31/W2NGL	<100	4		50	<1	<1	9	6	3,400
289	09-02-83	321PBRGU				450					120
290	09-02-83	321PBRGU				40					160
292	08-23-84	321UNNN	·			50					200
297	09-07-83	317WSNGU				40					490
300	09-07-83	317WSNGU				60					950
301	09-07-83	317WBRGL	<10			50	<1	<1		10	1 000
304	09-07-83	317WBRGL				140					110
314	08-17-83	321PBRGR									
320	09-07-83	317GREN				80					360
322	09-05-84	31/WSNGM 321MEGN	90 <10	1	79	<20	<1	<1	2	8	4,500
403	08-07-84	317WBRGL				140					120
408	08-31-84	317GREN				60					450
409	09-07-83	317WSNGM				90					130
412	08-31-84	31/WBRGU				40		·			520
430	08-06-84	321PBRGU				80					130
438	08-11-83	321PBRG				90					160
493	08-16-83	321PBRGU				50					130
498	08-11-83	321UNNN 317WSNCI				40					1/0
544	08-06-84	317WBRGL				60					100
555	08-11-83	321UNNN				<20					210
576	08-09-84	317WSNGL				<20					100
586	08-12-83	317WBRGU				30					1,700
594	08-16-83	317WSNGU				120					3.300
601	08-09-84	317GREN				30					260

.

Appendix F.--Trace-element analyses of ground water--Continued

[See Appendix C for explanation of geologic unit; $\mu g/L$, micrograms per liter; <, less than; --. no data]

Local iden- tifier	Iron, dis- solved (μg/L as Fe)	Lead, dis- solved (µg/L as Fb)	Manga- nese, total recov- erable (μg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Mercury, dis- solved (μg/L as Hg)	Nickel, dis- solved (μg/L as Ni)	Sele- nium, dis- solved (µg/L as Se)	Silver, dis- solved (µg/L as AG)	Stron- tium, dis- solved (µg/L as SR)	Zinc, dis- solved (µg/L as ZN)	
19 23	220 930										
31 41 61	70 1,300 1,700										
74	70										
92	<3 520		20	2							
93 100	170 2,300				·						
113	700										
130	810										
142	70										
155	500			40							
	17	<1	2 90	30	<0.1	<1	<1		580	9	
156 181	9,100			500							
182 189	5	<1 	70 50	6 10	<.1	<1	1		310	29	
197	51		40	26							
205	2,100	1	810	750	<.1	<1	<1		580	33	
209			10	5							
222	5		<10	1				~ -			
240	50		10	20							
244	140		10	7		~1			810		
269	140		10	1							
271	3,100	<1	350	340	<.1	<1	<1		750	34	
289	10		<10	<1							
290 291	14		<10	42							
292	10		80	70							
297	15		30	31							
300	25		10	4							
301 303	16	<1	20 330	12	< 1	<1	<1		500	49	
304	11		10	3							
314	47		40	5							
320	6		20	9							
322	19	4	100	14 140	<.1 1	3	<1	<1	490 6.700	1,100	
403	7		10	2							
408	100		50	33							
409	14		10	<1							
412	8		40	22							
430	12		10	1							
438	3		20	16							
493	15		10	1							
498 503	3 18		<10	3 15							
544	4		10	2							
222	8		20	8							
576	4		<10	1							
586 592	1,400		1,100 <10	1,100							
594	30		210	180							
POT	4		<10	2							

•;

.

_

Appendix FTrace-element analyses of grou	und	ground	l waterConti	nued
--	-----	--------	--------------	------

.

•

[See Appendix C for explanation of geologic unit; μ g/L, micrograms per liter; <, less than; --. no data]

Local iden- tifier	Date of sample	Geologic unit	Alum- inum, dis- solved (µg/L as Al)	Arsenic, dis- solved (µg/L as As)	Barium, dis- solved (µg/L as Ba)	Boron, dis- solved (µg/L as B)	Cadmium, dis- solved (μg/L as Cd)	Chromium, hexa- valent, dis- solved (µg/L as Cr)	Cobalt, dis- solved (µg/L as Co)	Copper, dis- solved (µg/L as Cu)	Iron, total recov- erable (μg/L as Fe)
609	08-09-84	317WBRGL				310					170
618	09-02-83	317WSNGM				240					60
620	08-23-84	317WBRGL				20					240
626	08-30-84	317WSNGM				60					130
636	0 8-08-84	317WSNGM				130					730
652	08-30-84	317WSNGM				40					1,400
680	08-30-84	321UNNN				250					290
696	08-30-84	317WBRGL				30					160
/15	08-23-84	31/GREN				<20					140
121	08-23-84	31/GREN	~ ~			150					150
735	08-08-84	317WBRGL				260					130
764	08-22-84	317WBRGL				260					300
775	08-22-84	321UNNN				130					970
798	08-22-84	317WBRGU				60					90
820	08-22-84	31/WSNGM				70					120
879	09-05-85	321RDSN				420					70
886	09-05-85	321UNNN				30					90
902	08-11-83	321PBRG				240					200
905	08-07-84	321UNNN				300					130
909	08-16-83	321PBRG				2 20					150
912	08-07-84	321UNNN				80					4.300
914	08-16-83	321PBRG				120					850
915	08-19-83	321CSLM				60					140
917	08-19-83	321GLNS				250					160
918	08-19-83	321GLNS				280					130
919	08-19-83	321GLNS				120					170
921	08-25-83	321PBRG				50					450
922	08-25-83	321PBRG				40					280
923	09-02-83	321PBRG				30					80
924	09-02-83	321PBRG				50					120
925	09-02-83	317WBRGU				120					2,100
930	08-08-84	321UNNN				40					1,900
931	08-08-84	317GREN				80					150
950	09-04-85	321CSLM				150					50
952	09-04-85	321GLNS				350					160
955	09-06-85	317WSNGM				30			,		6 0
966	09-05-85	321UNNN				80					50
972	09-05-85	321RDSN				30					400
SP 10	08-11-83	321UNNN				60					140
SP 11	09-02-83	317WBRGM				30					150
SP 72	09-05-85	321PBRGL				90					50
SP 93	08-16-83	321UNNN				<20					120
SP 94	08-12-83	317GREN				<20					410
SP 95	09-07-83	317WBRGM				50					130

.

Appendix F.--Trace-element analyses of ground water--Continued

[See Appendix C for explanation of geologic unit; $\mu g/L$, micrograms per liter; <, less than; --. no data]

~

Local iden- tifier	Iron, dis- solved (μg/L as Fe)	Lead, dis- solved (µg/L as Pb)	Manga- nese, total recov- erable (μg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Mercury, dis- solved (µg/L as Hg)	Nickel, dis- solved (μg/L as Ni)	Sele- nium, dis- solved (µg/L as Se)	Silver, dis- solved (µg/L as AG)	Stron- tium, dis- solved (µg/L as SR)	Zinc, dis- solved (µg/L as ZN)
609 618 620 625 636	13 40 4 24 4		<10 10 <10 60 110	4 10 1 2 33					 	
652 680 696 715 727	97 11 6 5 5		220 10 60 <10 10	230 8 41 6 3		 	 	 	 	
735 764 775 798 820	8 42 140 5 7		10 60 130 <10 30	3 32 120 <1 2				 	 	
879 886 902 905 909	18 10 20 19 9		10 20 10 <10 20	6 6 7 5 4		 		 	 	
912 914 915 917 918	66 5 20 11 8		100 110 340 10 20	100 83 320 2 13			 	 	 	
919 921 922 923 924	13 11 5 6 <3		20 310 40 50 20	11 290 17 40 11		 	 	 	 	
925 930 931 950 952	15 320 7 18 18		60 80 10 50 10	48 80 <1 32 5		 	 	 	 	
955 966 972 SP 10 SP 11	12 43 12 4 15	 	20 90 80 130 10	15 85 49 120 3	 	 	 	 	 	
SP 72 SP 93 SP 94 SP 95	4 <3 11 <3		10 10 20 10	3 <1 14 <1						

Appendix G.--Surface-water quality data

[ft³/s, cubic feet per second; µS/cm, microsiemens per centimeter at 25 degrees Celsius; ^{*}C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)	
	03085237	CHARTIERS	CREEK AT	HOUSTON,	PA Site	1 (LAT 40	14 26 LONG	080 12 31)			
MAY 13,	,											
1983	0750	48	660	7.7	14.5	250	5.0	74	16	35	3.6	
SEPT 02	2,											
1983	1550		820	7.6	23.0	260	**	78	15	65	7.5	
AUG 28,					_							
1984	0800	13	750	7.3	21.0	230		69	14	54	6.5	
AUG 22,	1510	13	850	7 4	21 0	250	9 9	75	15	64	12	
1705	1510	15	010	7.4	21.0	230	1.1	, ,	15	04	12	
	03085240	CHARTIERS	RUN AT HO	USTON, P.	A Site 2	(LAT 40 14	54 LONG 0	80 12 39)				
MAY 13,												
1983	0845	20	710	8.0	12.5	350	5.0	86	32	27	2.2	
AUG 31,												
1983	1400	8,5	1,050	7.9	21.0	530		130	49	32	4.0	
AUG 28,		• •	7.4									
1984	0900	5.6	760	7.8	18.5	320		83	27	29	5.9	
1985	1235	19	930	78	20.5	440	5 0	110	40	49	4 0	
1,05	1205	1 . /	,	7.0	20.5	110	2.0	110		.,		
	03085300	LITTLE CH	ARTIERS CR	EEK AT L	INDEN, PA	Site 3 (L	AT 40 14 14	4 LONG 080	08 20)			
MAY 13,			×.									
1983	1100	33	500	8.5	15.5	210		66	11	18	1.4	
AUG 31,												
1983	0815	12	480	7.9	20.5	190		59	9.5	24	4.3	
AUG 27,								<i>(</i> 7	• •	<u>.</u>		
1984	1500	2.5	600	8.3	22.0	220		67	13	34	3.1	
AUG 22, 1985	1610	24	625	8 1	22 0	230	n	71	13	36	3.9	
	1.10				22.0	200						
	03085310	RES #2 LI	ITLE CHART	IERS CREE	EK NEAR M	CMURRAY, PA	Site 4 (I	LAT 40 15 2	27 LONG 08	0 06 05)		
MAY 13,												
1983	1150	.75	510	8.4	17.0	230		67	16	20	1.5	
AUG 31,												
1983	0920	.28	570	8.0	18.0	240		73	15	23	5.0	
AUG 28,	0000	11	45 E	9.2	17 0	270		79	19	23	2 1	
1904 AUG 22	0920	. 1 1	619	0.2	1/.0	270		13	10	23	4.1	
1985	1740	0.6	625	8.1	19.0	280	. 0	80	19	24	2.1	
	2,40			- • •								

.

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity, field (mg/L as CaCO ₃	Sulfate, dis- solved (mg/L) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (µg/L as Fe)	Iron, dissolved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manganese, dissolved (µg/L as Mn)
	03085237	CHARTIERS C	REEK AT HOU	ISTON, PA S	ite 1 (LAT	40 14 2 6 LO	NG 080 12	31)		
MAY 13, 1983	140	110	40	0.70	5.0	411	410	41	170	160
1983	140	140	69	1.4	11	561	990	37	330	280
1984	130	110	.00	2.2	8.8	459	1,200	49	310	280
1985	120	150	73	1.3	9.5	535	830	38	140	120
	03085240	CHARTIERS R	UN AT HOUST	ON, PA Sit	e 2 (LAT 40	14 54 LONG	080 12 39)		
MAY 13, 1983	160	210	40	.40	7.3	501	340	22	330	320
1983 AUG 28.	110	440	14	.50	9.8	783	430	16	490	490
1984 AUG 22,	160	210	20	.40	7.6	500	1,000	47	170	140
1985	160	330	18	.60	7.7	600	490	23	240	220
	03085300	LITTLE CHAR	TIERS CREEK	AT LINDEN,	PA Site 3	(LAT 40 14	14 LONG 08	80 08 20)		
MAY 13, 1983	150	66	20	.20	4.5	290	200	13	40	56
1983 AUG 27	140	61	31	.20	7.5	296	2,600	28	190	12
1984 AUG 22,	170	84	44	.30	5.0	372	410	13	30	19
1985	170	74	48	.30	6.4	373	470	6	40	21
MAY 12	03085310 H	RES #2 LITT	LE CHARTIER	S CREEK NEA	R MCMURRAY,	PA Site 4	(LAT 40 1	5 27 LONG 08	30 06 05)	
1983 AUG 31	170	62	23	.20	8.1	323	210	19	60	57
1983 AUG 28.	180	68	28	.20	12	352	1,300	45	240	110
1984 AUG 22.	240	54	32	.10	11	355	1,600	12	190	86
1985	230	56	32	.30	11	378	640	8	80	33

191 [.]

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)	
	03075081	PETERS C	REEK AT GAS	TONVILLE	. PA Sit	e 5 (LAT 4)	15 56 LON	G 079 58 5	8)			
MAY 13					,				-,			
1983	1740	12	1,430	7.3	20.0	460	9.9	120	39	160	2.0	
AUG 31.			-,									
1983	0905	11	1,740	7.6	19.5	370		99	30	200	3.8	
AUG 28.			-,									
1984	1225	2.9	3,500	8.3	20.5	520		130	48	520	3.6	
AUG 23,												
1985	0745	2.4	4,300	8.0	15.5	600	5.0	140	60	810	4.3	
	03075058	MINGO CRI	FFK AT RIVE	שידע ק	PA Site	6 (TAT 40 1	2 31 LONG	079 57 53)				
MAY 13	000,0000	111100 010			IN DICE	0 (2011 40 1		, <u>,</u>				
1983	1550	20	730	8.6	19.5	270		71	22	56	1.8	
AUG 31.												
1983	1120	15	1,150	8.0	20.0	370		110	24	100	3.4	
AUG 28,												
1984	1055	1.8	1,550	8.3	19.0	470		130	36	150	4.4	
AUG 23,												
1985	0745	.70	2,000	7.9	16.0	610	5.0	160	50	220	5.8	
	03075037	PIGEON CF	REEK AT HAZ	EL HURST	. PA Sit	.e 7 (LAT 40	10 38 LONG	G 079 57 2	5)			
MAY 13.					,	,						
1983	1350	50	1,230	9.1	18.0	360		95	29	150	2.8	
AUG 30,												
1983	1730	13	2,420	8.5	26.5	490		130	40	410	7.2	
AUG 28,												
1984	0955	7.6	2,250	8.6	20.0	390		100	34	340	5.4	
AUG 23,												
1985	1030	7.1	2,800	8.6	18.0	460		120	38	470	6.3	
(03075035	NORTH BRA	NCH PIGEON	CREEK A	T BENTLYV	ILLE. PA S	ite 8 (LAT	40 07 54 1	LONG 080 C	0 19) [.]		
MAY 13,												
1983	1120	10	700	8.5		330		89	25	21	1.7	
AUG 31,												
1983	1305	5.9	675	7.9	21.0	280		79	21	21	4.7	
AUG 25,												
1984	0835	.38	945	8.3	19.0	420		110	35	47 .	4.0	
AUG 23,												
1985	1145	.33	1.000	7.6	19.0	460	15	120	38	43	4.3	

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity field (mg/L as CaCO	Sulfate, dis- solved (mg/L 3) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (μg/L as Fe)	Iron, dissolved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manganese, dissolved (µg/L as Mn)
	03075081	PETERS CREE	K AT GASTON	VILLE, PA	Site 5 (LAT	' 40 15 56 L	ONG 079 58	58)		
MAY 13	,									
1983	110	480	100	0.50	11	1,030	1,800	19	1,300	990
AUG 31	,					•				
1983	82	570	130	.50	8.9	1,020	4,000	19	970	520
AUG 28	1									
1984	152	980	610	.70	7.9	2,280	430	40	310	320
AUG 23	,	1 700	100			2 222	500			
1982	170	1,700	430	.80	8.2	3,290	520	40	390	370
	03075058	MINGO CREEK	AT RIVER V	TEW PA SI	te 6 (LAT 4	0 12 31 LON	G 079 57 53	3)		
MAY 13								.,		
1983	140	200	21	.20	5.4	491	220	18	10	20
AUG 31,										
1983	140	380	45	.40	7.7	771	1,300	20	140	33
AUG 28,										
1984	182	440	63	. 40	6.7	1,050	230	8	70	65
AUG 23,										
1985	170	830	90	.30	7.4	1,580	160	30	90	100
	00075007	DICTON COPP	V AT 114 751		C:+- 7 (7 AT	10 10 20 10		25.)		
MAY 12	030/203/	PIGEON CREE	K AI HAZEL	HURSI, PA	Site / (LAI	40 IU 38 LU	JNG 079 37	20)		
1083	150	390	60	30	5 4	822	140	14	40	29
AUG 30	150	3,0	00	.50	5.4	022	140	14	-0	2)
1983	200	930	210	. 50	4.9	1.880	350	20	90	50
AUG 28.	200					-,				
, 1984	240	530	180	.50	2.9	1,400	210	20	30	20
AUG 23,										
1985	230	920	230	.60	4.6	2,020	270	30	30	30
	03075035	NORTH BRANC	H PIGEON CRI	EEK AT BENT	LYVILLE, PA	Site 8 (LA	AT 40 07 54	LONG 080	00 19)	
MAY 13,										
1983	170	190	11	.20	7.0	474	460	22	250	210
AUG 31,			• /	• •			0 000	1(0	710	2/0
1983	110	200	10	. 30	8.1	440	9,200	T0 0	10	340
AUG 25,	200	25.0	20	30	5 2	(22	240	1.4	4.0	10
1784 AUG 22	200	200	27	.30	3.4	032	360	14	40	17
1985	220	300	31	20	67	741	240	12	30	19
	220	000	0 1	. 20	U .,	, - <u>-</u>		**	•••	

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- tanecus (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L - as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Fotas- sium, dis- solved (mg/L as K)	
	03074800	PIKE RUN	AT DAISYTC	WN. PA	Site 9 (L	AT 40 03 32	LONG 079	55 32)				-
MAY 13.				,				,				
1983	0950	20	890	8.4	11.5	350		89	31	62	2.8	
AUG 30,												
1983	1430	5.9	750	8.5	25.5	390		100	34	120	5.8	
AUG 27,												
1984	0920	2.2	1,230	8.2	15.5	400		100	36	170	4.4	
AUG 22,												
1985	1300	6.4	1,540	8.4	21.0	390		96	36	170	5.0	
0	3072820	DANTELS F	NIN AT WEST	7011405	WTITE DA	Sita 10 (TAT 40 01 5	TONG 08	05 321			
MAY 12	0072020	DIGITERO I			•1666, In	. Dite 10 (LAI 40 01 .	I Lond to	5 05 02,			
1983	1250	15	1,140	8.8	15.0	260		76	17	160	1.8	
AUG 30.			-,									
1983	1150	3.5	6,900	8.3	19.5	600		160	48	1100	6.6	
AUG 27,												
1984	1135	3.2	7,000	8.3	17.0	490		87	67	1700	6.9	
AUG 22,												
1985	1000	3.5	7,000	8.1	17.5	590	5.0	130	65	1400	6.1	
0	2072919	DANTELS F	UN NEAD LE	ST 70114			(IAT 40.02	AC LONG	90 05 37			
OCT 19	3072010	DAMILLS R	UN NEAR WE	SI ZULLA	RSVILLE,	FA Site II	(LAI 40 03	06 LONG (180 03 37,	1		
1982	1530	25	4 700	83	16 5	390		110	29	840	4 9	
MAY 12	1990	. 25	4,700	0.0	10.5	370		110	2,	0.0	4.7	
1983	1455	8 1	690	87	20 0	190		59	11	61	2 1	
JUNE 23	1,00	•		•••	20.0							
1983	1415	2.2	1.210	8.5	25.5	220		66	13	190	2.7	
AUG 30.			-,									
1983	1300	1.2	1,950	8.3	25.5	250		73	16	280	4.5	
JAN 30,												
1984	1245	3.9	610	8.1	1.5	170		54	9.7	59	2.3	
APR 13,				•								
1984	1415	11	500	8.7	18.0	180		56	9.9	35	1.6	
AUG 27,												
1984	1050	.56	2 ,120	8.2	19.0	290		85	20	380	3.7	
NOV 09,												
1984	0830	2.0	1,690	7.9	10.0		6.0	76	17	260	3.3	
FEB 01,												
1985	0845	2.5	1,030	7.9	.0	210		64	13	170	2.1	
APR 24,											_	
1985	1300	5.0	580	8.3	23.0	190		58	12	45	2.4	
AUG 22,		_		_			-		25	5 00		
1985	1100	. 48	2,900	8.2	22.5	330	.0	90	25	520	4.6	

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; [°]C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity field (mg/L as CaCO	Sulfate, , dis- solved (mg/L 3) as SO4)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (µg/L as Fe)	Iron, dissolved (μg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manganese, dissolved (µg/L as Mn)
MAY 13	03074800	PIKE RUN AT	I DAISYTOWN,	PA Site 9	(LAT 40 03	3 32 LONG 079	55 32)			
1983 AUG 30	170	290	16	0.20	6.8	654	4,800	<3	590	87
1983 AUG 27,	120	510	28	.30	8.5	930	180	20	90	39
1984 AUG 22,	190	430	32	.30	6.7	1,030	210	8	30	30
1985	204	500	38	.40	8.5	1,070	220	12	70	36
	03072820	DANIELS RUN	AT WEST ZO	LLARSVILLE,	PA Site 1	.0 (LAT 40 01	51 LONG	080 05 32)		
MAY 12, 1983 AUG 30,	180	290	67	.20	5.5	710	130	<3	50	55
1983 AUG 27,	. 370	2,100	350	.30	8.0	4,060	360	50	80	50
1984 AUG 22,	460	2,600	910	. 40	9.2	6,050	220	50	70	60
1985	370	2,600	480	. 40	10	5,300	180	30	260	250
007 10	03072818	DANIELS RUN	NEAR WEST	ZOLLARSVILLI	E, PA Site	11 (LAT 40	03 06 LON	G 080 05 37)		
1982 MAY 12,	270	950	720	.80	4.7	2,680	230	20	150	100
1983 JUNE 23	150	110	5 5	.20	5.6	420	140	4	40	23
1983 AUG 30,	210	220	140	. 40	6.1	7 78	260	<3	50	53
1983 JAN 30,	180	320	250	.40	7.6	1,100	530	22	120	69
1984 APR 13.	150	94_	50	<.10	6.5	392	520	12	60	50
1984 AUG 27	140	84	27	.20	5.2	305	270	9	40	27
1983	210	370	420	.50	5.5	1,350	350	30	90	80
1983 FEB 01	210	320	190	.40	5.6	988	200	14	60	52
1985	190	220	120	.30	6.4	725	340	14	110	81
1985 AUG 22	170	83	27	.20	3.8	334	590	15	60	28
1985	250	680	410	.70	6.3	1,970	240	20	90	80

-

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)
	03072817	LITTLE TE	INMILE CREE	K NEAR T	ENMILE, F	A Site 12	(LAT 40 01	15 LONG 0	80 07 41)		
MAY 12	,										
1983	1025	23	375	8.5	12.0	170		53	9.1	14	1.5
AUG 30	,										
1983	0955	11	395	8.0	19.5	160		53	7.2	13 ,	4.3
AUG 27,								- /			
1984	1313	1./	475	8.3	19.0	180		56	9.2	22	3.1
AUG 22, 1985	0900	12	480	78	18 5	190	99	59	10	30	3 9
1,05	0,00	1.2	400	7.0	10.5	170			10	00	0.7
	03072815	TENMILE C	REEK NEAR	AMITY, P	A Site 1	3 (LAT 40 C	1 11 LONG (080 12 20)			
MAY 12,										•	
1983	0820	50	320	8.0	12.5	150	.0	48	6.3	7.1	1.1
AUG 31,											
1983	0840	5.4	360	7.8	21.5	150		51	6.2	10	3.9
AUG 2/,	0000	25	300	7 9	17 0	160		52	67	12	2 9
1904 AUG 22	0800	2.2	390	1.0	17.0	100				12	4.9
1985	0745	3.5	360	7.7	18.0	170	5.0	55	7.3	11	3.5
	03072813	TENMILE C	REEK AT PR	OSPERITY	, PA Sit	e 14 (LAT 4	0 02 44 LO	IG 080 17	38)		
MAY 12,											
1983	1010	13	380	8.3	12.0	160		55	6.7	7.3	1.1
AUG 31,	1000	10	120	7 0	21 5	100		5.0	7 0	16	E /
1983 AUG 27	1000	.49	430	1.8	21.5	180		79	7.9	10	5.4
1984	0945	66	430	76	18 0	170		56	8.0	16	3.1
AUG 22.	0,10		100		20.0	1,0		•••			
1985	0745	.70	440	7.5	18.5	180	9.9	59	7.9	17 ·	3.6
									24.44		
MAY 12	03111580	TEMPLEION	FORK NEAR	WEDI FI	NLLI, PA	Site IS (L	AI 39 38 40	LONG 080	26 46)		
1983	1030	21	270	8 8	12 0	130		42	5.7	5.2	1 1
AUG 30.	1000	~~	2,0	0.0	12.0	200					
1983	0845	.00	355	7.1	17.0	170		58	7.3	8.3	2.5
AUG 27,											
1984	0805	. 48	340	8.0	15.5	150		50	6.5	6.4	2.4
AUG 22,											
1985	1030	.96	370	7.9	16.5	160	5.0	52	6.8	6.6	2.7

196 `

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity, field (mg/L as CaCO ₃)	Sulfate, dis- solved (mg/L) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (μg/L as Fe)	Iron, dissolved (μg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manganese, dissolved (µg/L as Mn)
	03072817 1	.ITTLE TENM	ILE CREEK N	EAR TENMILE	, PA Site	12 (LAT 40 0	01 15 LONG	080 07 41)		
MAY 12,										
1983 AUG 30	130	55	9.0	0.20	4.2	240	180	11	50	36
1983 AUG 27	110	55	15	.20	9.0	236	930	35	130	36
1984	160	81	21	. 20	4.3	293	370	24	40	25
1985	170	56	20	. 20	5.7	299	650	20	100	72
	03072815 T	ENMILE CRE	EK NEAR AMI	TY, PA Sit	e 13 (LAT 4	0 01 11 LONG	G 080 12 20) .		
MAY 12,										
1983 AUG 31,	110	40	5.8	. 10	4.2	197	220	14	40	40
1983	110	37	13	. 20	7.8	204	1,300	31	190	75
AUG 27,	, contestas essente n en la									
1984 AUG 22	140	35	14	.20	3.8	208	- 940	20	60	40
1985	140	33	15	.20	5.3	235	480	25	90	76
	03072813 T	ENMILE CRE	EK AT PROSP	ERITY, PA	Site 14 (LA	T 40 02 44 L	ONG 080 17	38)		
MAY 12,										
1983	130	39	7.2	.10	5.1	219	220	8	50	54
AUG 31,						955	1 000	2.0		210
1983	150	40	17	.20	7.1	255	1,900 ,	30	410	340
AUG 27,	150	36	18	< 10	3 3	231	1 500	22	220	170
AUG 22	150	55	10	S. 10	5.5	201	1,500	22	220	1,0
1985	160	31	21	.20	4.4	255	530	18	150	140
	03111580 T	EMPLETON F	ORK NEAR WE	ST FINLEY, N	PA Site 15	(LAT 39 58	40 LONG 08	0 26 46)		
MAY 12,										
1983	100	36	3.5	.10	4.1	161	190	7	10	7
AUG 30,										
1983	150	27	5.7	. 20	8.1	210	390	11	290	260
AUG 27,		25	5.0	10	, ,	17/	200	15	20	1.4
1984	130	35	5.2	. 10	4.4	1/4	290	CT	20	14
1985	130	31	6.2	.30	4.7	202	140	10	10	9

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)	
	03111585	ENLOW FOR	K NEAR WES	T FINIEY	PA Sit	a 16 (LAT 3	9 58 06 1.0	NG 080 26	53)	. ,		
MAY 12	00111005	Encon ron			, 16 510	JE IO (DAI C	JO DO LOL	0 000 20	337			
1983	, 1000	36	280	8.7	11.0	130		43	5.8	6.2	1.2	
AUG 30												
1983	0915	.16	610	7.6	18.5	210		70	9.5	33	3.4	
JAN 25												
1984	0900	171	212	7.6	.0	83		27	3.8	6.6	2.3	
AUG 27,												
1984	0915	1.3	590	7.9	16.0	150		49	7.1	51	2.5	
FEB 01,												
1985	1030	30	315	8.0	.0	130		44	6.0	15	1.3	
AUG 22,												
1985	0940	3,3	650	8.0	17.5	170	0.0	55	8.1	60	3.0	
	02111602	DOBINGON	FORK AT WE	CT DINIE	V DA CA	to 17 (TAT	20 50 22 10	NC 080 29	40)			
MAY 12	03111603	ROBINSON	FURK AI WE	SI FINLE	I, FA 51	Le I/ (LAI	39 39 33 LC	MG 060 28	40)			
1093	0845	16	285	8 1	9 0	130	0	44	5 6	3 9	1 0	
AUG 30	0045	10	205	0.1	2.0	155			2.0	0.7	1.0	
1983	1030	0.0	375	7.3	18.5	170		56	8.0	7.0	3.0	
AUG 27.		• • •										
1984	1020	.15	340	8.4	18.5	150		50	6.7	5.6	2.4	
AUG 22,												
1985	1535	.35	340	8.4	21.0	150	5.0	50	6.9	6.0	2.8	
	03111900	MIDDLE WH	EELING CRE	EK NEAR	W. ALEXAN	DER, PA Si	te 18 (LAT	40 03 59 1	LONG 080 3	10 59)		
MAY 12,												
1983	1200	9.3	310	8.9	14.5	150		50	6.2	5.2	1.1	
AUG 30,												
1983	1115	.56	350	7.1	20.5	170		50	6.9	7.4	5.0	
AUG 27,								<i>(</i>)		10		
1984	1110	.07	430	7.8	18.0	180		60	8.3	10	3.2	
AUG 22,	1(20	22	110		21 6	190	5 0	5.9	7 8	<u> </u>	2 0	
1985	1620	. 27	410	0.0	21.5	100	J.U	10	7.0	0.0	3.0	
	03111220	DUTCH FOR	K CREEK NE	AR CLAYS	VILLE. PA	. Site 19 (LAT 40 07 2	2 LONG 080	28 26)			
MAY 12.												
1983	1330	14	390	8.8	17.0	180		60	8.0	8.6	1.3	
AUG 30,												
1983	1220	3.6	465	7.3	21.5	210		68	9.2	15	3.9	
AUG 27,												
1984	1300	.71	640	8.0	19.5	250		81	12	27	3.0	
AUG 22,												
1985	1850	.55	650	7.7	19.0	260	5.0	83	12	28	3.5	

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; [°]C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity, field (mg/L as CaCO ₃	Sulfate, dis- ·solved (mg/L) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (µg/L as Fe)	Iron, dissolved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manganese dissolved (µg/L as Mn)
	03111585 H	ENLOW FORK	NEAR WEST F	INLEY, PA	Site 16 (LA	T 39 58 06 I	LONG 080 2	6 53)		
MAY 12,										
1983	94	37	6.1	0.10	5.0	168	130	120	20	30
AUG 30,										
1983	130	31	85	.20	4.0	331	530	25	50	26
JAN 25,										
1984	52	33	10	.10	5.7	147	1,900	61	100	34
AUG 27,										
1983	120	45	81	.20	3.0	313	380	11	20	10
FEB 01,	100	1.2	• •			0 1 0	100			• •
1985	120	42	16	<.10	5.7	218	190	21	40	16
1085	130	57	81	20	37	361	180	7	20	9
1905	100		51	.20	5.7	551	100	,	20	0
	03111603 F	OBINSON FO	RK AT WEST	FINLEY, PA	Site 17 (L	AT 39 59 33	LONG 080	28 40)		
MAY 12.										
1983	98	39	3.0	. 10	3.9	166	110	9	20	11
AUG 30,										
1983	140	32	6.6	. 20	6.5	205	620	21	200	150
AUG 27,										
1984	120	37	5.8	. 10	4.1	182	210	19	20	12
AUG 22,										
1985	120	32	6.0	.20	4.3	188	160	11	10	7
,	00111000 M	NUDIE WUEE	LINC CDEEK		VANDED DA		T 40 03 50	LONG 080 S	0 50)	
MAV 12	03111900 P	IIDDLE WIEE	LING CREEK	MEAR W. ALL	ARDER, FA	3108 10 (LA	1 40 03 3	5 LONG 080 3	10 19)	
1983	110	42	5 2	10	47	186	140	<3	30	27
AUG 30	110		5.2	. 10	7./	100	1.0			L /
1983	100	48	10	.20	7.1	211	750	26	70	26
AUG 27,										
1984	150	46	16	.20	3.6	247	280	16	50	41
AUG 22,										
1985		34	11	.20	4.5	225	180	9	20	16
-					.					
(///	J3111220 D	UTCH FORK (UREEK NEAR (LAYSVILLE,	FA Site 1	9 (LAT 40 07	22 LONG (180 28 26)		
MAI 12,	120	57	10	20	E 1	251	220	1 5	20	20
1703	120	/د	12	. 20	J.I	162	230	10	30	30
1987	130	69	19	20	95	287	1 100	3.4	80	50
AUG 27	130	00	1)	, 2 U	د. ۲	207	1,100	54		72
1984	180	78	40	20	67	334	500	17	120	110
AUG 22	200	, 0		. 20	0.7	554	200	- /	123	*10
1005	100	70		10	7 0	202		10	120	110

199`

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; *C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)	
	03085217	CHARTIERS	CREEK AT	LAGONDA,	PA Site	20 (LAT 40	07 19 LONG	G 080 17 2	5)			
MAY 12,												
1983	1610	3.7	390	9.2	21.0	170	·	57	7.3	8.8	1.6	
AUG 30,												
1983	0925	1.9	380	7.6	19.5	170		55	7.2	13	3.2	
JAN 25,												
1984	1115	4.9	330	7.8	1.5	120		41	5.4	14	2.9	
AUG 27,												
1984	1135	.66	550	8.2	19.5	200		66	9.5	25	3.0	
FEB 01,												
1985	1045	2.4	451	8.0	.0	2 00		64	8.6	23	1.8	
AUG 22,												
1985	0840	.20	630	7.7	18.0	220	9.9	70	11	40	4.3	
MAY 12	03085 2 20	UNNAMED TI	RIB #28 TO	CHARTIE	RS CREEK	AT LAGONDA,	PA Site 2	21 (LAT 40	07 27 LON	IG 080 15	42)	
1983	1140	65	410	7.7	15 5	170	5.0	59	6.7	7.5	. 90	
.TAN 25	11.0					2/0					••••	
1984	1315	. 61	378	8.0	3.0	170		59	5.8	8.4	1.7	
AUG 27												
1984	1335	.06	480	7.4	20.0	210		72	7.3	11	1.4	
AUG 28,												
1985	0855	.03	510	7.9	15.5	230	5.0	78	8.2	13	1.7	
	03085221	UNNAMED TH	RIB #1 TO	CHARTIERS	S CREEK A	T LAGONDA,	PA Site 22	2 (LAT 40	07 45 LONG	080 15 10))	
MAY 12,												
1983	1205	1.2	460	8.5	16.0	210		75	6.5	7.4	1.1	
AUG 30,												
1983	1150	. 4 4	450	7.7	21.0	210		73	6.2	9.2	3.0	
JAN 25,												
1984	1230	2.2	358	7.9	3.0	140		49	4.8	11	4.6	
DEC 27,												
1984	1410	.15	530	7.7	21.0	230		79	7.0	14	2.4	
FEB 01,												
1985	1200	.35	489	7.9	.0	220		75	6.9	23	1.5	
AUG 22,												
1985	1000	.06	560	8.0	17.0	260	9.9	90	8.3	19	2.8	

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity, field (mg/L as CaCO ₃	Sulfate, dis- solved (mg/L) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolvad (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (µg/L as Fe)	Iron, dissolved (µg/L as Fe)	Manga- nese, total recov- erable (μg/L as Mn)	Manganese, dissolved (µg/L as Mn)
	03085217	CHARTIERS C	REEK AT LAG	ONDA. PA S	ite 20 (LAT	: 40 07 19 LC	NG 080 17	25)		
MAY 12										
1983	130	47	10	0.20	5.2	232	410	15	100	79
AUG 30.										
1983	120	44	17	.20	9.1	234	1,300	39	330	270
JAN 25,										
1984	88	40	23	.10	6.3	217	1,900	30	170	99
AUG 27,										
1984	180	52	30	.20	5.6	311	840	19	160	130
FEB 01,										
1985	140	47	38	.10	7.0	284	620	35	200	170
AUG 22,										
1985	200	41	51	.20	7.7	374	830	26	340	260
MAY 17	03085220 1	UNNAMED TRI	B #2B TO CH	ARTIERS CRE	EK AT LAGON	DA, PA Site	21 (LAT	40 07 27 LO	NG 080 15	42)
1983 .TAN 25	120	59	9.3	.20	7.6	239	1,900	57	330	360
1984 AUG 27,	130	43	14	.10	6.6	251	1,000	27	, 70	59
1984 AUG 28,	170	40	15	.20	8.3	265	550	19	70	56
1985	200	34	20	.20	8.9	313	730	17	70	71
(030852 21 ไ	JNNAMED TRI	B #1 TO CHA	RTIERS CREE	K AT LAGOND	A, PA Site	22 (LAT 4)	07 45 LON	G 080 15	10)
MAY 12,										
1983	170	50	7.0	.20	8.7	284	260	13	50	50
AUG 30,										
1983	160	45	11	.20	11	263	780	18	170	140
JAN 25,										
1984	110	43	19	.20	6.8	242	3,100	81	290	100
DEC 27,										
1984	200	46	.00	.20	9.6	297	700	15	130	110
FEB 01,										
1985	160	49	39	.20	7.8	313	490	150	240	190
AUG 22,										
1985	230	37	28	.20	9.6	361	660	12	160	130

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)	
(03085224	RES #3. C	HARTIERS C	REEK NEA	R WASHING	TON. PA Si	te 23 (LAT	40 08 35	LONG 080	15 05)		
MAY 12.												
1983	1305	0.87	400	8.7	18.0	200		69	7.1	8.0	1.1	
AUG 30,												
1983	1445	. 44	430	7.8		200		67	7.0	12	2.5	
AUG 28,												
1984	1130	.05	530	8.2		230		79	8.3	13	1.9	
AUG 22,												
1985	1030	.06	530	7.9	17.5	240	5.0	83	8.9	12	1.9	
,	3111140	BUFFALO C	DEEV AT TA	VIODTOUN		- 24 (IAT 4	0 00 56 10	10 0 90 22	47)			
MAV 12	5111140	DUFFALO C	NDEN AI IA	LURIOWN	, FA SIL	e 24 (LAI 4	.0 03 28 TOT	0 000 22	47)			
1083	1430	37	370	0 0	17 0	170		54	7 9	9.5	1 2	
AUG 30	1450	52	570	0.0	17.0	1/0		20	1.5	<i>.</i>	1.2	
1983	1345	4 0	490	78	25 5	200		64	94	20	4 0	
AUG 27	1040	4.0	4,70	7.5	23.5	200		04	2.4	20	4.0	
1984	1400	3 2	540	83	22 0	200		64	10	19	25	
AUG 22	1400	5,2	540	0.0	22.0	200		04	10	17	2.5	
1985	1030	1.6	420	7.9	22.0	210	5.0	68	10	21	2.9	
0	3111150	BRUSH RUN	NEAR BUFF	ALO, PA	Site 25	(LAT 40 11	54 LONG 080	24 28)				
OCT 20,												
1982	1315	. 19	500	8.0	11.5	220		69	12	14	5.1	
MAY 13,												
1983	1230	8.5	490	8.5	15.5	220		73	9.4	6.5	1.4	
JUNE 24							_					
1983	1215	3.0	450	8.1	23.5	220	.0	73	10	6.8	2.2	
AUG 30,												
1983	1500	.25	425	7.8	25.0	190		60	10	11	4.2	
JAN 30,				•	-	100		<i>.</i> •			.	
1984	1000	4.9	390	8.0	. 5	180		61	7.9	6.4	2.5	
APR 12,	1215	12	200	0 E	1/ 0	100		<i>c 1</i> .	9 1	5 0	1 4	
1984	1315	13	390	8.5	14.0	190		64	0.1	5.2	1.4	
AUG 28,	0000	50		0.1	10.0	100		(1	10	0.5	2 /	
1984 NOV 08	0900	. 59	450	8.1	19.0	190		01	10	9.5	3.4	
1004 00,	17/5	3 7	1. / F	g 1	6 0	200		67	٩٥	g /.	2 8	
1704	1240	3.2	440	0.1	ō.U	200		0/	9.0	0.4	4.0	
1025	0020	2 /	447	7 0	0	220		75	<u>a</u> 5	11	1 4	
1705 20 22	0730	5,4	44/	1.7	. u	200		د ،	7.J	11	1.0	
1095	1255	<u>د ج</u>	1.25	o /.	21 E	200		66	<u> </u>	6 7	1 4	
AUG 23	LCJJ	د.ه	433	0.4	ر.نے	200		00		0.2	1.0	
1985	1045	1 4	360	8 1	17 0	210	n	66	11	10	3.7	
	T047	±.*	100	U.1	1/.0	210				.	u .,	
[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; *C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity, field (mg/L as CaCO ₂	Sulfate, dis- solved (mg/L) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dis so lved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (µg/L as Fe)	Iron, dissolved (μg/L as Fe)	Manga- nese, total recov- erable (μg/L as Mn)	Manganese, dissolved (μg/L as Mn)
	03085224	RES #3, CHA	ATIERS CREE	K NEAR WASE	IINGTON, PA	Site 23 (LA	T 40 08 3	5 LONG 080	15 05)	
MAY 12,										
1983	150	51	13	.20	8.0	268	300	17	40	40
AUG 30,										
1983	140	4 5	15	. 20	13	259	450	19	90	43
AUG 28,										
1984	170	57	24	.10	10	304	390	12	50	58
AUG 22,										
1985	190	55	28	. 20	11	331	960	13	110	100
	03111140	BUFFALO CRE	EK AT TAYLO	RTOWN, PA	Site 24 (LA	T 40 09 56 L	ONG 080 2:	247)		
MAY 12,										
1983	120	48	13 ,	.20	5.1	222	200	18	30	24
AUG 30,										
1983	140	45	32	. 20	7.3	281	880	19	120	55
AUG 27,										
1984	160	50	.00	.20	5.0	259	460	20	60	56
AUG 22,										
1985	170	45	32	.20	5.6	301	840	44	110	82
(03111150	BRUSH RUN N	EAR BUFFALO	PA Site	25 (LAT 40	11 54 LONG 08	30 24 28)			
OCT 20				,			,			
1982	190	40	17	20	37	297	220	40	50	30
MAY 13										
1983	160	54	84	20	5 1	254	240	20	30	22
JUNE 24		5.	•••							
1983	, 180	50	10	. 20	6.6	295	600	3	50	33
AUG 30										
1983	150	41	13	. 20	5.3	245	600	21	100	49
JAN 30.										
1984	140	52	12	.10	6.6	265	320	9	30	25
APR 12.										
1984	140	58	9.4	.10	4.9	248	240	7	40	26
AUG 28.										
1984	160	49	14	2.0	39	236	470	20	50	34
NOV 08		. •			- • -					
1984	160	56	13	. 10	7.2	250	280	15	50	42
FEB 01									-	
1985	170	48	16	. 20	7.0	307	270	17	90	33
APR 23										
1985	160	51	9.1	.10	3.6	246	430	20	40	25
AUG 23.										
1985	160	44	13	.10	4.6	268	310	11	50	37

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; *C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)
	03111250	SUGARCAMP	RUN AT FR	OGTOWN,	PA Site	26 (LAT 40	12 25 LONG	080 31 05)		
MAY 13,	,										
1983	1100	7.7	440	8.3	13.5	210		69	9.7	5.2	1.4
AUG 31,	,										
1983	1100	3.5	390	7.1	20.5	180		58	9.0	6.2	4.1
AUG 28,											
1984	1100	.50	450	8.2	20.0	210		66	10	6.7	2.8
AUG 23,											
1985	1204	.14	350	1.7	17.0	220	9.9	/0	11	6.6	2.7
	00111005	NORTH FOR	V CDOSS CD			S:+- 27 /	TAT 40 16 1		1 77 41 V		
MAY 12	03111002	NURTH FUR	r cruss cr	EEK AL A	VELLA, PA	Site 2/ (LAI 40 16 .	39 LONG 08	5 27 41)		
1083	0945	20	545	8 1	12 0	260	0	74	18	10	1 4
AUG 31	0,40	20	242	0.1	12.0	200	.0	74	10	10	1.7
1983	0930	12	650	73	20 5	280		77	21	29	3.8
AUG 28	0,00	12	000	7.0	20.5	200					
1984	1300	2.7	710	8.3	24.0	300		83	23	27	3.0
AUG 22.											
1985	1515	1.4	855	8.0		360	.0	98	28	37	3.6
	03111001	CROSS CRE	EK NEAR HI	CKORY, P	A Site 2	8 (LAT 40 1	5 08 LONG (080 21 29)			
MAY 13,											
1983	0830	3.8	445	8.4	11.0	230		75	9.2	4.6	1.1
AUG 31,											
1983	1315	.74	470	7.3	22.0		26	67	9.7	6.5	9.7
AUG 28,											
1984	0745	.39	480	8.0	19.0	220		70	11	6.7	2.8
AUG 22,								-		. .	- -
1985	1630	.15	443	8.4	25.0	190		59	11	8.4	5.3
	00107/00	BACCOON C		utevon"			10 12 101	- 090 10 1			•
MAV 12	03107690	RACCOON C	KEEK NEAR	HICKORY,	rA Site	29 (LAT 40	13 13 FONG	3 UOU 19 14	•)		
MAX 13,	0.015	3 /	460	0 1	10 5	220	0	72	10	8.0	1 6
1903	0913	3.4	400	0.1	10.2	220	.0	12	10	0.0	1.0
1983	1415	31	515	8 1	24 5	230		72	12	14	5.2
AUG 27	1412	.91	ن ـ <i>ب</i>	0.1	2 7.J	200				- '	
1984	1340	60	465	8.4	21.5	200		59	12	12	3,2
AUG 22	1010										. –
1985	1245	. 30	505	8.3	20.0	220		68	12	15	3.6
								•			

-

.

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity, field (mg/L as CaCO ₃	Sulfate, dis- solved (mg/L) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180°C dissolved (mg/L)	Iron, total recov- erable (μg/L as Fe)	Iron, dissolved (µg/L as Fe)	Manga- nese, total recov- erable (μg/L as Mn)	Manganese, dissolved (µg/L as Mn)
	03111250	SUGARCAMP R	UN AT FROGT	OWN PA SI	ta 26 (LAT	40 12 25 10	NG 080 31	05)		
MAY 13				,	00 10 (111					
1983	, 160	52	5.2	0.20	4.6	238	130	10	10	4
AUG 31	,									
1983	130	50	6.9	.20	7.6	235	3,100	46	130	5
AUG 28	,									
1984	170	51	7.6	.20	6.5	251	240	9	10	4
AUG 23	,				,					
1985	170	48	7.2	.10	7.2	284	610	5	10	1
	03111005	NORTH FORK	CROSS CREEK	AT AVELLA	PA Sita 2	7 (IAT 40 16	38 LONG	080 27 41)		
MAY 13	00111000		enous oraca		In Dide 2	/ (LMI 40 10	, do Lono	300 2, 41,		
1983	, 170	95	5.5	.20	6.0	338	820	24	150	120
AUG 31										
1983	140	190	8.1	.20	7.4	432	2,000	57	220	120
AUG 28	,									
1984	150	210	8.2	.20	7.1	478	460	4	110	99
AUG 22	,									
1985	150	280	9.1	.30	7.2	605	140	6	150	150
	00111001	TOCC CDEEV	NEAD RICKO		- 20 (1) 7 (0 15 09 1000	000 21 2	• •		
MAY 12	03111001 (LRUSS CREEK	NEAR HICKU	RI, PA SIL	e 28 (LAI 4	0 15 08 LONG	, 000 Z1 Z	<i>,</i>		
TAL 13,	170	5.4	4.2	20	57	293	280	14	40	42
AUG 31	1/0	54	7.2	.20	5.7	2,5	200	14	40	42
1983	130	77	11	.20	9.1	300	2.700	72	270	160
AUG 28.				,			_,			
1984	190	83	6.0	.20	6.3	269	900	18	140	120
AUG 22,										
1985	170	43	9.7	<.10	6.9	261	470	25	100	91
	03107690 F	RACCOON CRE	EK NEAR HIC	KORY, PA S	ite 29 (LAT	40 19 13 LO	NG 080 19	14)		
MAY 13,									<i>(</i>)	(b
1983	160	63	9.3	.20	6./	307	JZU	У	60	62
AUG 30,	100	5 /	16	20	a 1	309	310	72	190	140
1783 AUG 27	120	4 ر	10	.20	7.1	300	310		100	740
1984	150	62	16	20	5 1	301	1.200	21	160	63
AUG 22	100	~~			.		_,			
1985	190	56	15	.30	6.3	301	600	13	160	120

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)
	03085400	MILLERS H	RUN AT CECI	L, PA S	ite 30 (1	AT 40 19 38	LONG 080	11 21)			
MAY 13,											
1983	0830	13	550	8.3	10.0	260		71	19	22	1.6
AUG 30,											
1983	1530	.91	790	8.5	23.5	290		80	23	46	4.1
AUG 28,											
1984	0800	2.4	850	8.1	18.0	300		81	24	47	3.3
AUG 23,											
1985	0745	1.0	960	8.1	14.5	310	.0	84	25	61	4.2
	03085450	ROBINSON	RUN AT MCD	ONALD, P	A Site 3	1 (LAT 40 2	1 55 LONG (080 14 38)			
MAY 13,											
1983	1200	8.8	1,750	6.4	14.0	720	55	170	72	87	3.5
AUG 30,											
1983	0745	2.6	2,200	6.2	16.5	960		230	93	150	6.6
AUG 27,											
1984	1500	3.5	2,500	6.3	18.0	840		180	95	160	5.6
AUG 22,		• •									••
1985	1350	2.3	2,450	6.5	17.5	820	55	190	83	180	19
	03107600	RACCOON C	REEK AT RA	CCOON, P	A Site 3	2 (LAT 40 2	3 01 LONG 0	80 22 05)			
MAY 12,											
1983	1340	26	950	6.8		370	45	100	28	35	2.1
AUG 30,											
1983	0915	3.6	1,650	4.4	16.0	610		160	50	99	3.4
AUG 27,			1 000					100	2.0	, ,	2.0
1984	1230	3./	1,290	4.6	17.0	480		120	30	44	2.9
AUG 22,	1140	1 0	1 330	. 7	17 0	4.9.0	55	120	41	45	3.0
1905	1140	4.0	1,330	4.7	17.0	490		150	71	45	5.6
(03110920	HARMON CR	EEK NEAR H	ANLIN ST.	ATION, PA	Site 33 (LAT 40 21 5	6 LONG 080	30 34)		
MAY 12,				• •		200		100	<i>(</i>)	17	
1983	1300	23	1,500	8.2	15.0	730	5.0	190	62	16	3.2
AUG 30,	1200	- ·	1 000		01 F	070		25.0	97	10	4.3
1983	1300	1.4	1,800	8.0	21.5	970		200	03	13	4.2
100 Z/,	1115	5 0	1 740	7 9	17 0	830		210	7.	27	4 2
1704 AUG 22	1112	0.0	1,/40	1.7	17.0	000		210	, -	~~	7.4
1985	1015	3 1	1 680	79	17 0	880	5 0	230	75	29	4.5
1,00	TOTO	J. I	1 ,000	1.7	I/.U	000	5.0	200	, .	. /	•••

...

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity field (mg/L as CaCO	Sulfate, , dis- solved (mg/L 3) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (μg/L as Fe)	Iron, dissolved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manganese, dissolved (µg/L as Mn)
	03085400	MILLERS RUN	AT CECIL,	PA Site 30	(LAT 40 19	9 38 LONG 08	0 11 21)			
MAY 13,										
1983	190	80	31	0.20	5.4	391	210	18	40	40
AUG 30,	200	110	70	20	6 9	472	150	1 /	80	26
1983	200	110	73	.30	0.0	4/2	120	14	00	26
AUG 20, 1984	200	91	96	20	57	499	230	12	70	31
AUG 23.	200									
1985	200	100	120	.30	5.5	568	330	6	40	22
	03085450	ROBINSON RU	N AT MCDONA	LD, PA Sit	e 31 (LAT 4	40 21 55 LON	G 080 14 3	8)		
MAY 13,										
1983	16	960	15	.60	21	1,490	16,000	16,000	3,700	4,000
AUG 30,	.,	1 200	25	<i>(</i>)	10	2 020	10.000	16 000	5 / 00	E (00
1983	14	1,300	20	.60	18	2,030	19,000	18,000	3,400	5,400
1984	24	1 300	23	60	18	1 940	33.000	29.000		3.900
AUG 22	27	1,000	20	.00	10	1,540	00,000	27,000		0,,,,,
1985	36	1,200	26	.60	15	1,910	23,000	14,000	3,700	3,900
	03107600	RACCOON CRE	EK AT RACCO	ON, PA Sit	e 32 (LAT 4	0 23 01 LON	G 080 [°] 22 0	5)		
MAY 12,										
1983	96	360	38	.50	14	696	9,500	4,000	1,400	1,300
AUG 30,										
1983		740	100	<.10	30	1,240	10,000	10,000	2,700	3,100
AUG 2/,	0	460	5.2	80	25	978	14 000	13,000	2 800	2 600
1964 AUG 22	U	460	23	.80	23	920	14,000	13,000	2,000	2,800
1985	2	570	40	.60	24	950	12,000	12,000	2,700	2,700
	ě									
	03110920	HARMON CREE	K NEAR HANL	IN STATION,	PA Site 3	33 (LAT 40 2)	1 56 LONG	080 30 34)		
MAY 12,	93	700	41	40	<u>a</u> a	1 210	540	6	1 600	1 500
1783 AUG 30	02	700	41	.40	7.0	1,210	540	o	1,000	1,000
1983	70	860	69	. 90	11	1,460	150	30	870	860
AUG 27.	, 5					-,		-		
1984	94	680	49	.10	8.7	1,310	210	13	190	180
AUG 22,										
1985	100	780	54	.20	7.6	1,380	200	19	90	74

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature (°C)	Hardness (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium, dis- solved (mg/L as K)	
-	03110812	KINGS CRE	EK NEAR FL	ORENCE	PA Site	34 (LAT 40	25 26 LONG	080 29 22)			
MAY 12	,											
1983	0900	6.6	420	7.6	9.0	200	5.0	56	15	5.8	1.5	
AUG 30	,											
1983	1030	.69	595	8.1	18.0	290		76	24	10	2.4	
AUG 27	,											
1984	0840	.84	595	8.0	14.0	280		75	23	8.6	2.4	
AUG 22	,											
1985	0800	.30	585	7.9	16.0	280	5.0	74	23	11	2.4	
	03110820	AUNT CLAR	A FORK NEA	R PARIS,	PA Site	a 35 (LAT 40	25 39 LONG	5 080 30 4	3)			
MAY 12	,											
1983	0945	12	475	8.3	9.5	240		63	19	5.7	1.5	
AUG 30	,											
1983	1140	1.2	680	8.0	19.5	340		87	29	8.4	3.0	
AUG 27	,											
1984	0945	1.4	. 760	8.0	14.5	360		91	32	7.7	2.6	
AUG 22,	,											
1985	0900	.79	638	7.8	16.0	310	5.0	82	2 6	7.6	2.6	

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; *C, degrees Celsius; mg/L, milligrams per liter; --, no data]

[ft³/s, cubic feet per second; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligrams per liter; --, no data]

Date	Alka- linity field (mg/L as CaCC	Sulfate, 7, dis- 1 solved . (mg/L 9 ₃) as SO ₄)	Chloride, dissolved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids, residue at 180 °C dissolved (mg/L)	Iron, total recov- erable (μg/L as Fe)	Iron, dissolved (μg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manganese, dissolved (μg/L as Mn)
	03110812	KINGS CREEN	NEAR FLORE	NCE, PA Si	te 34 (LAT	40 25 26 LON	G 080 29	22)		
MAY 12,	,									
1983	74	140	6.3	0.20	7.2	291	280	<3	40	39
AUG 30,	,									
1983	110	190	8.6	.20	7.1	395	230	12	90	43
AUG 27,	•									
1984	110	200	8.6	.30	6.3	402	430	8	50	38
AUG 22,										
1985	120	170	9.4	. 20	6.4	397	640	7	130	79
	03110820	AUNT CLARA	FORK NEAR P	ARIS, PA S	ite 35 (LAT	40 25 39 LO	NG 080 30	43)		
MAY 12,										
1983	80	170	5.3	.20	6.0	306	170	<3	10	20
AUG 30,										
1983	110	230	6.0	.20	5.3	461	240	7	100	63
AUG 27,										
1984	100	240	7.3	<.10	4.7	484	220	4	40	35
AUG 22,										
1985	110	220	5.9	.20	4.7	453	170	9	50	45

209 `

APPENDIX H.--AQUIFER TEST DRAWDOWN GRAPHS

[Drawdown in feet on all graphs should be a positive number, not a negative number as plotted.]

Observation well	<u>Date of aquifer test</u>
WS-155	07-01-71
WS-155	08-23-83
WS-182	08-26-83
WS-205	08-24-83
WS-265	07-12-83
WS-271	12-05-84
WS-271	12-05-84
WS-277	07-13-83
WS-277	08-19-83
WS-321	05-03-84
WS-322	05-03-94
GR-802-pumping well	07-29-81
GR-802 (Recovery)	07-30-81
GR-803-observation well	07-27-81
GR-803 (Recovery)	07-30-81
GR-804	09-29-80

211

213 `

TIME, IN MINUTES

218 `

GLOSSARY

- <u>Acidity</u>.--The capacity of a water for neutralizing a basic solution. Acidity, as used in this report, is primarily caused by the presence of hydrogen ions produced by hydrolysis of the salts of strong acids and weak bases.
- <u>Alkalinity</u>.--The capacity of a water for neutralizing an acidic solution. Alkalinity in natural water is caused primarily by the presence of carbonate and bicarbonate.
- <u>Alluvium</u>.--Sand, gravel, or other similar particle material deposited by running water.
- <u>Anticline</u>.--An upfold or arch of stratified rock in which the beds dip in opposite directions from the crest.
- <u>Aquifer</u>.--A geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield usable quantities of water to wells and springs.
- <u>Aquifer test</u>.--A test or controlled field experiment involving either the withdrawal of measured quantities of water from, or addition of water to, a well (or wells) and the measurement of resulting changes in head in the aquifer both during and after the period of discharge or addition.
- <u>Base flow</u>.--Discharge entering stream channels as effluent from the groundwater reservoir; the dry-weather flow of streams.
- <u>Bedrock</u>.--A general term for the rock, generally solid, that underlies soil or other unconsolidated or semiconsolidated surficial material.
- <u>Confined aquifer</u>.--An aquifer which is bounded above and below by relatively impermeable rocks.
- <u>Cubic feet per second (ft³/s)</u>.--The rate of discharge representing a volume of l cubic foot passing a given point during l second (equivalent to 7.48 gallons per second or 448.8 gallons per minute).
- <u>Cubic feet per second per square mile [(ft³/s)/mi²]</u>.--The average number of cubic feet of water per second flowing from each square mile of area drained by a stream, assuming that the runoff is distributed uniformly, in time and area.
- <u>Dissolved</u>.--Refers to that material in a representative water sample which passes through a 0.45 micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.
- <u>Dip</u>.--The angle or rate of drop at which a layer of rock is inclined from the horizontal.

GLOSSARY -- Continued

- <u>Dissolved solids</u>.--The dissolved mineral constituents in water; they form the residue after evaporation and drying at a temperature of 180 °C; they may also be calculated by adding concentrations of anions and cations.
- <u>Drawdown</u>.--The lowering of the water table or potentiometric surface caused by pumping (or artesian flow) of a well.
- <u>Evapotranspiration</u>.--Evaporation of water from land and water surfaces plus transpiration by vegetation.
- <u>Flow-duration curve</u>.--A cumulative frequency curve that shows the percentage of time that specified discharges are equaled or exceeded.
- <u>Fold</u>.--A bend or flexure produced in rock strata by forces operating after deposition of the rock.
- <u>Formation</u>.--The fundamental unit in rock-stratigraphic classification. It is a body of internal homogeneous rock; it is prevailingly but not necessarily tabular and is mappable at the earth's surface or traceable in the subsurface.
- Ground water. -- That part of the subsurface water in the zone of saturation.
- <u>Ground-water discharge</u>.--Release of water in springs, seeps, or wells from the ground-water reservoir.
- <u>Ground-water recharge</u>.--Addition of water to the ground-water reservoir by infiltrating precipitation or seepage from a streambed.
- <u>Hardness</u>.--A physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₂).
- <u>Head (static)</u>.--The height above a standard datum of the surface of a column of water (or other liquid) that can be supported by the static pressure at a given point. In this report, head is synonymous to water level.
- <u>Hydraulic conductivity</u>.--Hydraulic conductivity (K) of water-bearing rocks is the volume of water (at the existing kinematic vicosity and temperature) that will move at right angles through a unit cross sectional area in unit time and by a unit hydraulic gradient. It is a measure of the capacity of the material to transmit fluid. The hydraulic gradient is expressed in feet of hydraulic head per foot of flow distance (dimensionless), and hydraulic conductivity is expressed in cubic feet per day per square foot $[(ft^3/d)/ft^2]$ or feet per day (ft/d). The hydraulic conductivity was determined from well tests by dividing the determined value of transmissivity by the thickness of the aquifer tested, thus representing an average formation property measured in a horizontal direction.

GLOSSARY--Continued

- <u>Hydraulic gradient</u>.--Change in head per unit of distance measured in the direction of the steepest change.
- <u>Joint</u>.--A fracture in a rock, generally more or less vertical, along which no differential movement has taken place.
- <u>Lithology</u>.--The physical characteristics of a rock, generally as determined by examination with the naked eye or with the aid of a low-power magnifier.
- Longwall mining.--A system of mining on straight faces 80 yards or more in length. A method of working coal seams in which the seam is removed in one operation by means of a long working face or wall. The workings advance (or retreat) in a continuous line which may be several hundred yards in length. The space from which the coal has been removed is either allowed to collapse (caving) or is completely or partially filled with stone or debris.
- <u>Micrograms per liter (µg/L)</u>.--A unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.
- <u>Milligrams per liter (mg/L)</u>.--A unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water.
- <u>pH</u>.--A measure of the acidity or alkalinity of water. Mathematically, the pH is the negative logarithm of the hydrogen-ion activity; pH=-log₁₀ [H⁺], where [H⁺] is the hydrogen-ion concentration in moles per liter. A pH of 7.0 indicates a neutral condition. An acid solution has a pH less than 7.0 and a basic or alkaline solution has a pH greater than 7.0.
- <u>Permeability</u>.--The capacity of a porous rock, sediment, or soil to transmit a fluid under a hydraulic head; it is a measure of the relative ease with which a porous medium can transmit a liquid under a potential gradient.
- <u>Primary permeability</u>.--The permeability of a material due to its soil or rock matrix.
- <u>Secondary permeability</u>.--The increase or decrease in primary permeability in the soil or rock due to fracturing, solution, or cementation.
- <u>Potentiometric surface</u>.--A surface that represents the static head of an aquifer.

- <u>Room-and-pillar mining</u>.--A system of mining by supporting the roof by pillars left at regular intervals. The coal is mined in rooms separated by narrow ribs or pillars. The first working in rooms is an advancing, and the winning of the rib (pillar) a retreating method.
- <u>Runoff</u>.--That part of the precipitation that appears in streams. It is the same as streamflow unaffected by diversions, storage, or other works of man in or on the stream channels.
- <u>Specific capacity</u>.--The well yield divided by the drawdown (pumping water level minus static water level) necessary to produce this yield. It is usually expressed as gallons per minute per foot [(gal/min)/ft].
- <u>Specific conductance</u>.--Is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25 degrees Celsius. Specific conductance is related to the type and concentration of ions in the solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.
- <u>Specific storage</u>.--The specific storage (Ss) of water-bearing rocks is the volume of water released from or taken into storage per unit volume of the porous material per unit change in head. Specific storage may be expressed in per foot (ft⁻¹). In this report, specific storage is determined from pumping tests by dividing the storage coefficient by the thickness of the tested water-bearing formation.
- <u>Storage coefficient</u>.-The storage coefficient (S) of an aquifer is the volume of water an aquifer releases from, or takes into, storage per unit surface area of the aquifer per unit change in head normal to that surface. With volume, area, and hydraulic head expressed in consistent units, storage coefficient is a dimensionless quantity.
- Streamflow.--Is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow in a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.
- <u>Syncline</u>.--A downfold or depression of stratified rock in which the beds dip inward toward the axis of the fold.

GLOSSARY--Continued

<u>Transmissivity</u>.--Transmissivity (T) is the rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient. It may be expressed in cubic feet per day per foot [(ft³/d)/ft] or feet squared per day (ft²/d).

<u>Unconfined aquifer</u>.--An aquifer which contains the water table.

Water table. -- The upper surface of the zone of saturation.

<u>Water year</u>.--October 1 through September 30 of the designated year. For example, water year 1984 starts October 1, 1983, and ends September 30, 1984.

GLOSSARY OF GROUND-WATER-MODEL TERMS

- <u>Anisotropy</u>.--In this report it is the ratio of the horizontal hydraulic conductivity (Kh) to the vertical hydraulic conductivity (Kv).
- <u>Boundary conditions</u>.--The condition of flow at the aquifer limits in a ground-water flow model. Specific types of boundaries used in this report are defined below:
 - <u>Constant-head boundary</u>.--Head does not change with time, but flow across the boundary is possible.
 - <u>No-flow boundary</u>.--Ground water does not flow across the boundary.
 - <u>Specified flux boundary</u>. A boundary where the flux across a given surface is specified as a function of position and time.
 - <u>Free-surface boundary</u>.--The surface between the atmosphere and the saturated flow field which may rise and fall with time.
 - <u>Head-dependent flux boundary</u>.--Flux across the boundary changes in response to changes in head within the aquifer adjacent to the boundary.
- <u>Calibration</u>.--The matching procedure used to refine initial estimates of aquifer properties and boundary conditions. Input data are modified as necessary until model-computed heads and flow compare sufficiently close to field observed values of head and flow at specific locations. Steadystate calibration is accomplished assuming no change in aquifer storage.
- <u>Finite-difference method</u>.-An approximation technique for solving a system of nonlinear equations of ground-water flow. The aquifer system is subdivided into discrete blocks at which the equation variables are specified or computed.
- <u>Flux</u>.--Volume of fluid per unit time crossing a unit cross-sectional surface area.
- <u>Grid block, finite-difference</u>.--The subdivision of the aquifer system by rows and columns into rectangular blocks in which aquifer properties such as transmissivity and storage coefficient are specified for model input data.
- <u>Node</u>.--The central point within each grid block at which a value of head is specified for or computed by a finite-difference model. Nodes in this report are identified by row and column number.

GLOSSARY OF GROUND-WATER-MODEL TERMS--Continued

- <u>Numerical model</u>.--A system of mathematical equations generally solved with the use of a computer to represent a physical process. The numerical model used in this report solves ground-water flow in a generalized cross section of the aquifer system.
- <u>Sensitivity analysis</u>.--A method in modeling in which several simulations are made to determine the sensitivity of computed heads to specific changes in input data.

. .

.