

State of Ohio Environmental Protection Agency

Division of Surface Water

Biological and Water Quality Study of the Mahoning River and Yellow Creek

Mahoning County

November 30, 2006

Bob Taft, Governor Joseph P. Koncelik, Director

Biological and Water Quality Study of the Mahoning River and Yellow Creek

2006

Mahoning County, Ohio November 30, 2006 OEPA Report EAS/2006-11-5

prepared for State of Ohio Environmental Protection Agency Division of Emergency and Remedial Response Northeast District Office

prepared by State of Ohio Environmental Protection Agency Division of Surface Water Lazarus Government Center 122 South Front Street Columbus, Ohio 43215

Bob Taft, Governor State of Ohio Joseph P. Koncelik, Director Environmental Protection Agency

TABLE OF CONTENTS

5
9
10
11
12
15
17
17
17
19
21
22
23
A1

NOTICE TO USERS

Ohio EPA incorporated biological criteria into the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1) regulations in February 1990 (effective May 1990). These criteria consist of numeric values for the Index of Biotic Integrity (IBI) and Modified Index of Well-Being (MIwb), both of which are based on fish assemblage data, and the Invertebrate Community Index (ICI), which is based on macroinvertebrate assemblage data. Criteria for each index are specified for each of Ohio's five ecoregions (as described by Omernik 1987), and are further organized by organism group, index, site type, and aquatic life use designation. These criteria, along with the existing chemical and whole effluent toxicity evaluation methods and criteria, figure prominently in the monitoring and assessment of Ohio's surface water resources.

The following documents support the use of biological criteria by outlining the rationale for using biological information, the methods by which the biocriteria were derived and calculated, the field methods by which sampling must be conducted, and the process for evaluating results:

- Ohio Environmental Protection Agency. 1987a. Biological criteria for the protection of aquatic life: Volume I. The role of biological data in water quality assessment. Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1987b. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989b. Addendum to Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989c. Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Div. Water Quality Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 1990. The use of biological criteria in the Ohio EPA surface water monitoring and assessment program. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2006a. 2006 updates to Biological Criteria for the Protection of Aquatic Life: Volume II and Volume II Addendum. Users manual for biological field assessment of Ohio surface waters. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2006b. 2006 updates to Biological Criteria for the Protection of Aquatic Life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2006c. Methods for assessing habitat in flowing waters: Using the Qualitative Habitat Evaluation Index (QHEI). Ohio EPA Tech. Bull. EAS/2006-06-1. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Rankin, E.T. 1989. The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.

In addition to the preceding guidance documents, the following publications by the Ohio EPA should also be consulted as they present supplemental information and analyses used by the Ohio EPA to implement the biological criteria.

- DeShon, J.D. 1995. Development and application of the invertebrate community index (ICI), pp. 217-243. in W.S. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Riskbased Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pp. 181-208. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. Biological criteria program development and implementation in Ohio, pp. 109-144. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. Biological response signatures and the area of degradation value: new tools for interpreting multimetric data, pp. 263-286. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. 1995. Policy issues and management applications for biological criteria, pp. 327-344. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. The role of biological criteria in water quality monitoring, assessment, and regulation. Environmental Regulation in Ohio: How to Cope With the Regulatory Jungle. Inst. of Business Law, Santa Monica, CA. 54 pp.
- Yoder, C.O. and M.A. Smith. 1999. Using fish assemblages in a State biological assessment and criteria program: essential concepts and considerations, pp. 17-63. in T. Simon (ed.). Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, Boca Raton, FL.

These documents and this report may be obtained by writing to:

Ohio EPA, Division of Surface Water Ecological Assessment Section 4675 Homer Ohio Lane Groveport, Ohio 43125 (614) 836-8786

or

www.epa.state.oh.us/dsw/formspubs.html

FOREWORD

What is a Biological and Water Quality Survey?

A biological and water quality survey, or "biosurvey", is an interdisciplinary monitoring effort coordinated on a waterbody specific or watershed scale. This effort may involve a relatively simple setting focusing on one or two small streams, one or two principal stressors, and a handful of sampling sites or a much more complex effort including entire drainage basins, multiple and overlapping stressors, and tens of sites. Each year Ohio EPA conducts biosurveys in 4-5 watersheds study areas with an aggregate total of 250-300 sampling sites.

The Ohio EPA employs biological, chemical, and physical monitoring and assessment techniques in biosurveys in order to meet three major objectives: 1) determine the extent to which use designations assigned in the Ohio Water Quality Standards (WQS) are either attained or not attained; 2) determine if use designations assigned to a given water body are appropriate and attainable; and 3) determine if any changes in key ambient biological, chemical, or physical indicators have taken place over time, particularly before and after the implementation of point source pollution controls or best management practices. The data gathered by a biosurvey is processed, evaluated, and synthesized in a biological and water quality report. Each biological and water quality study contains a summary of major findings and recommendations for revisions to WQS, future monitoring needs, or other actions which may be needed to resolve existing impairment of designated uses. While the principal focus of a biosurvey is on the status of aquatic life uses, the status of other uses such as recreation and water supply, as well as human health concerns, are also addressed.

The findings and conclusions of a biological and water quality study may factor into regulatory actions taken by Ohio EPA (*e.g.,* NPDES permits, Director's Orders, the Ohio Water Quality Standards [OAC 3745-1], Water Quality Permit Support Documents [WQPSDs]), and are eventually incorporated into State Water Quality Management Plans, the Ohio Nonpoint Source Assessment, and the biennial Integrated Water Quality Monitoring and Assessment Report (305[b] and 303[d]).

Hierarchy of Indicators

A carefully conceived ambient monitoring approach, using cost-effective indicators consisting of ecological, chemical, and toxicological measures, can ensure that all relevant pollution sources are judged objectively on the basis of environmental results. Ohio EPA relies on a tiered approach in attempting to link the results of administrative activities with true environmental measures. This integrated approach includes a hierarchical continuum from administrative to true environmental indicators (Figure 1). The six "levels" of indicators include: 1) actions taken by regulatory agencies (permitting, enforcement, grants); 2) responses by the regulated community (treatment works, pollution prevention); 3) changes in discharged quantities (pollutant loadings); 4) changes in ambient conditions (water quality, habitat); 5) changes in uptake and/or assimilation (tissue contamination, biomarkers, wasteload allocation); and, 6) changes in health, ecology, or other effects (ecological condition, pathogens). In this process the results of administrative activities (levels 1 and 2) can be linked to efforts to improve water quality (levels 3, 4, and 5) which should translate into the environmental "results" (level 6). Thus, the aggregate effect of billions of dollars spent on water pollution control since the early 1970s can now be determined with quantifiable measures of environmental condition. Superimposed on this hierarchy is the concept of stressor, exposure, and response indicators. Stressor indicators generally include activities which have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications. Exposure indicators are those which measure the effects of stressors and can include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to a stressor or bioaccumulative agent. Response indicators are generally composite measures of the cumulative effects of stress and exposure and include the more direct measures of community and population response that are represented here by the biological indices which comprise Ohio's biological criteria. Other response indicators could include target assemblages, i.e., rare, threatened, endangered, special status, and

Administ	LEVEL 1	Actions by EPA and States	NPDES Permit Issuance Compliance/Enforcement Pretreatment Program Actual Funding CSO Requirements Storm Water Permits 319 NPS Projects 404/401 Certification Stream/Riparian Protection
rative	LEVEL 2	Responses by the Regulated Communitiy	POTW Construction Local Limits Storm Water Controls BMPs for NPS Control Pollution Prevention Measures
	LEVEL 3	Changes in Discharge Quantities	Point Source Loadings - Effluent & Influent Whole Effluent Toxicity (WET) NPDES Violations Toxic Release Inventory Spills & Other Releases Fish Kills
True I	LEVEL 4	Changes in Ambient Conditions	Water Column Chemistry Sediment Chemistry Habitat Quality Flow Regime
≣nvironm	LEVEL 5	Changes in Uptake and/or Assimilation	Assimilative Capacity - TMDL/WLA Biomarkers Tissue Contamination
ental	LEVEL 6	Changes in Health and Ecology, or Other Effects	Biota (Biocriteria) Bacterial Contamination Target Assemblages (RT&E, Declining Species)

Figure 1. Hierarchy of administrative and environmental indicators which can be used for water quality management activities such as monitoring and assessment, reporting, and the evaluation of overall program effectiveness. This is patterned after a model developed by the U.S. EPA.

declining species or bacterial levels which serve as surrogates for the recreation uses. These indicators represent the essential technical elements for watershed-based management approaches. The key, however, is to use the different indicators *within* the roles which are most appropriate for each.

Describing the causes and sources associated with observed impairments revealed by the biological criteria and linking this with pollution sources involves an interpretation of multiple lines of evidence including water chemistry data, sediment data, habitat data, effluent data, biomonitoring results, land use data, and biological response signatures within the biological data itself. Thus the assignment of principal causes and sources of impairment represents the association of impairments (defined by response indicators) with stressor and exposure indicators. The principal reporting venue for this process on a watershed or subbasin scale is a biological and water quality report. These reports then provide the foundation for aggregated assessments such as the Integrated Water Quality Monitoring and Assessment Report (305[b] and 303[d]), the Ohio Nonpoint Source Assessment, and other technical bulletins.

Ohio Water Quality Standards: Designated Aquatic Life Use

The Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1) consist of designated uses and chemical, physical, and biological criteria designed to represent measurable properties of the environment that are consistent with the goals specified by each use designation. Use designations consist of two broad groups, aquatic life and non-aquatic life uses. In applications of the Ohio WQS to the management of water resource issues in Ohio's rivers and streams, the aquatic life use criteria frequently result in the most stringent protection and restoration requirements, hence their emphasis in biological and water quality reports. Also, an emphasis on protecting for aquatic life generally results in water quality suitable for all uses. The five different aquatic life uses currently defined in the Ohio WQS are described as follows:

1) *Warmwater Habitat (WWH)* - this use designation defines the "typical" warmwater assemblage of aquatic organisms for Ohio rivers and streams; this use represents the principal restoration target for the majority of water resource management efforts in Ohio.

2) Exceptional Warmwater Habitat (EWH) - this use designation is reserved for waters which support "unusual and exceptional" assemblages of aquatic organisms which are characterized by a high diversity of species, particularly those which are highly intolerant and/or rare, threatened, endangered, or special status (*i.e.,* declining species); this designation represents a protection goal for water resource management efforts dealing with Ohio's best water resources.

3) Coldwater Habitat (CWH) - this use is intended for waters which support assemblages of cold water organisms and/or those which are stocked with salmonids with the intent of providing a put-and-take fishery on a year round basis which is further sanctioned by the Ohio DNR, Division of Wildlife; this use should not be confused with the Seasonal Salmonid Habitat (SSH) use which applies to the Lake Erie tributaries which support periodic "runs" of salmonids during the spring, summer, and/or fall.

4) Modified Warmwater Habitat (MWH) - this use applies to streams and rivers which have been subjected to extensive, maintained, and essentially permanent hydromodifications such that the biocriteria for the WWH use are not attainable and where the activities have been sanctioned by state or federal law; the representative aquatic assemblages are generally composed of species which are tolerant to low dissolved oxygen, silt, nutrient enrichment, and poor quality habitat.

5) *Limited Resource Water (LRW)* - this use applies to small streams (usually <3 mi² drainage area) and other water courses which have been irretrievably altered to the extent that no appreciable assemblage of aquatic life can be supported; such waterways generally include small streams in extensively urbanized areas, those which lie in watersheds with extensive drainage modifications, those which completely lack water on a recurring annual basis (*i.e.*, true ephemeral streams), or other irretrievably altered waterways.

Chemical, physical, and/or biological criteria are generally assigned to each use designation in accordance with the broad goals defined by each. As such the system of use designations employed in the Ohio WQS constitutes a "tiered" approach in that varying and graduated levels of protection are provided by each. This hierarchy is especially apparent for parameters such as dissolved oxygen, ammonia-nitrogen, temperature, and the biological criteria. For other parameters such as heavy metals,

the technology to construct an equally graduated set of criteria has been lacking, thus the same water quality criteria may apply to two or three different use designations.

Ohio Water Quality Standards: Non-Aquatic Life Uses

In addition to assessing the appropriateness and status of aquatic life uses, each biological and water quality survey also addresses non-aquatic life uses such as recreation, water supply, and human health concerns as appropriate. The recreation uses most applicable to rivers and streams are the Primary Contact Recreation (PCR) and Secondary Contact Recreation (SCR) uses. The criterion for designating the PCR use can be having a water depth of at least one meter over an area of at least 100 square feet or, lacking this, where frequent human contact is a reasonable expectation. If a water body does not meet either criterion, the SCR use applies. The attainment status of PCR and SCR is determined using bacterial indicators (*e.g.,* fecal coliform, *E. coli*) and the criteria for each are specified in the Ohio WQS.

Attainment of recreation uses are evaluated based on monitored bacteria levels. The Ohio Water Quality Standards state that all waters should be free from any public health nuisance associated with raw or poorly treated sewage (Administrative Code 3745-1-04, Part F). Additional criteria (Administrative Code 3745-1-07) apply to waters that are designated as suitable for full body contact such as swimming (PCR-primary contact recreation) or for partial body contact such as wading (SCR- secondary contact recreation). These standards were developed to protect human health, because even though fecal coliform bacteria are relatively harmless in most cases, their presence indicates that the water has been contaminated with fecal matter.

Water supply uses include Public Water Supply (PWS), Agricultural Water Supply (AWS), and Industrial Water Supply (IWS). Public Water Supplies are simply defined as segments within 500 yards of a potable water supply or food processing industry intake. The AWS and IWS use designations generally apply to all waters unless it can be clearly shown that they are not applicable. An example of this would be an urban area where livestock watering or pasturing does not take place, thus the AWS use would not apply. Chemical criteria are specified in the Ohio WQS for each use and attainment status is based primarily on chemical-specific indicators. Human health concerns are additionally addressed with fish tissue data, but any consumption advisories are issued by the Ohio Department of Health.

ACKNOWLEDGEMENTS

The following individuals are acknowledged for their contribution to this report.

Stream sampling: David Altfater, Mike Gray, Jessica Page, Gunars Zikmanis, Data support: Dennis Mishne Report preparation and analysis: David Altfater, Mike Gray Reviewers - Jeff DeShon, Marc Smith, Nancy Zikmanis, Vicki Deppisch

INTRODUCTION

The City of Struthers has asked for assistance in providing an assessment of the biological and chemical condition of Yellow Creek adjacent to the CASTLO Industrial Park - West property. The CASTLO Industrial Park was previously known as the Youngstown Sheet and Tube Co. (YS&T), Struthers Works (or Rod and Wire Division) that was part of the much larger Youngstown Sheet and Tube Co., Campbell Works. The Youngstown Sheet and Tube Co., Campbell Works, was geographically located in the cities of Youngstown, Campbell and Struthers. The property evaluated in this study was the CASTLO Industrial Park, formerly Youngstown Sheet and Tube, Struthers Works, located at 100 South Bridge Street (SR 616) between Liberty Street and the Mahoning River. Ohio EPA is providing technical assistance to the City of Struthers under a grant subsidized Targeted Brownfield Assessment (TBA) for a portion of this former steel mill along Yellow Creek. Through the TBA, the Division of Surface Water evaluated surface water, sediment and biological conditions in Yellow Creek to assess the contribution of potential contaminants from the former steel mill area.

Additionally, the City of Campbell asked for assistance in evaluating the Mahoning River in the vicinity of the former Youngstown Sheet and Tube Co., Campbell Works, pickling line area. This area is located upstream from Walton Avenue. Ohio EPA is providing technical assistance to the City of Campbell under a grant subsidized Targeted Brownfield Assessment (TBA) for a portion of this former steel mill along the Mahoning River. Through the TBA, the Division of Surface Water evaluated surface water, sediment and biological conditions in the Mahoning River to assess the contribution of potential contaminants from the former pickling line area.

Specific objectives of the evaluation were to:

- Establish biological conditions in the Mahoning River (former YS&T Campbell Works pickling line property) and Yellow Creek (CASTLO Industrial Park West) by evaluating fish and macroinvertebrate communities,
- Evaluate surface water and sediment chemical quality in the Mahoning River and Yellow Creek, and
- Determine the aquatic life use attainment status of the Mahoning River and Yellow Creek with regard to the Warmwater Habitat (WWH) aquatic life use designation codified in the Ohio Water Quality Standards.

The Mahoning River and Yellow Creek are located in the Erie-Ontario Lake Plain (EOLP) ecoregion. Both the Mahoning River and Yellow Creek are currently assigned the Warmwater Habitat (WWH) aquatic life used designation in the Ohio Water Quality Standards.

SUMMARY

Mahoning River

A total of 1.5 miles of the Mahoning River was assessed by the Ohio EPA in 2006. Based on the performance of the biological communities, the entire 1.5 miles of the Mahoning River were in nonattainment of the Warmwater Habitat (WWH) aquatic life use (Table 1). The non-attainment was caused by poor to fair fish results and a fair macroinvertebrate community. The urbanized condition of the Mahoning River within the study segment (municipal wastewater discharges and sewer overflows), habitat modifications, and elevated sediment contaminants (related to legacy discharges) contributed to the impaired biological communities. These conditions do not appear associated with chemical constituents released under current conditions at the former YS&T, Campbell Works, pickling line. Sediment contamination is pervasive within the study segment of the Mahoning River.

Biological communities have improved in the Mahoning River study segment since 1994, when fish and macroinvertebrate communities were in the poor to very poor range. Results during 2006 documented fair to poor results.

Yellow Creek

Biological communities were assessed at two locations (RMs 0.4 and 0.1) in Yellow Creek. The sampling site located upstream from the CASTLO Industrial Park – West was fully attaining the Warmwater Habitat aquatic life biocriteria. Biological sampling results at RM 0.1, adjacent to the CASTLO property, revealed partial attainment of the WWH biocriteria. Fish sampling results were fully attaining the fish biocriteria; however, macroinvertebrate quality was fair and not achieving the WWH biocriterion. The decline in the macroinvertebrate community at the RM 0.1 site appeared to be related to an intermittent discharge high in suspended solids that was observed when the HD sampler was collected on September 25, 2006. Chemical analyses of water and sediment samples at RM 0.1 were within acceptable environmental levels. Although some chemical parameters were elevated in sediment collected at RM 0.1, sediment samples were sampled using a "worst case" scenario by focusing on depositional areas of fine grain material. These areas typically are represented by higher contaminant levels, compared to sands and gravels. Both sediment sampling sites in Yellow Creek were almost devoid of fine grain material. Potential legacy contaminants from the former YS&T, Struthers Works were not contributing to biological impairment in Yellow Creek.

RECOMMENDATIONS

Status of Aquatic Life Uses

The aquatic life use designation of Warmwater Habitat (WWH) for the Mahoning River and Yellow Creek has been confirmed in previous Ohio EPA biological and water quality studies. This study verified the WWH use designation for the Mahoning River and Yellow Creek.

Status of Non-Aquatic Life Uses

This study verified that the Primary Contact Recreation use is appropriate for the Mahoning River and Yellow Creek.

Table 1. Aquatic life use attainment status for stations sampled in the Mahoning River and Yellow Creek, based on data collected July – September, 2006. The Index of Biotic Integrity (IBI), Modified Index of Well-being (MIwb), and Invertebrate Community Index (ICI) scores are based on the performance of the biological community. The Qualitative Habitat Evaluation Index (QHEI) is a measure of the ability of the physical habitat to support a biological community. Both streams are located in the Erie-Ontario Lake Plain (EOLP) ecoregion.

River Mile Sample Site Fish/Macroinvertebrate	Attainment Status	IBI	Mlwb	ICI	QHEI	Comments
Mahoning River (WWH)						
17.0/ 17.0	NON	<u>25</u> *	<u>6.0</u> *	22*	46.5	Impounded
16.5/ 16.5	NON	<u>25</u> *	6.4*	22*	47.5	Impounded
16.0/ 16.0	NON	<u>24</u> *	<u>5.9</u> *	22*	54.0	Impounded
Yellow Creek (WWH)						
0.4/ 0.4	FULL	43	8.6	38	67.0	
0.1/ 0.1	PARTIAL	44	7.7 ^{ns}	28*	71.5	Intermittent discharge location

Ecoregion Biocriteria: Erie Ontario Lake Plain (EOLP)

INDEX - Site Type	WWH	EWH
IBI: Wading/Boat	38/40	50/ 48
MIwb: Wading/ Boat	7.9/ 8.7	9.4/ 9.6
ICI	34	46

* Significant departure from ecoregion biocriterion; poor and very poor results are underlined.

Nonsignificant departure from biocriterion (<4 IBI or ICI units; <0.5 MIwb units).

 Table 2.
 Sampling locations in the Mahoning River and Yellow Creek, 2006. Type of sampling included fish community (F), macroinvertebrate community (M), sediment (S), and surface water (W).

Stream/ River Mile	Type of Sampling	Latitude	Longitude	Landmark
Mahoning Ri	ver			
17.0	F,M,S,W	41°04'16.0"	80°36'27.4"	Upstream YS&T, Campbell Works, Pickling Line
16.5	F,M,S,W	41°03'52.6"	80°36'03.6"	Adjacent YS&T, Campbell Works, Pickling Line
16.1	F,M,S,W	41°03'46.3"	80°35'38.9"	Downstream YS&T, Campbell Works, Pickling Line
Yellow Creek	r			
0.4	F,M,S,W	41°03'18.9"	80°35'15.8"	Upstream CASTLO West property
0.1	F,M,S,W	41°03'27.7"	80°35'03.1"	Adjacent/downstream CASTLO West property

Figure 2: Map of Yellow Creek / Mahoning River showing sampling locations, 2006.

METHODS

All chemical, physical, and biological field, EPA laboratory, data processing, and data analysis methods and procedures adhere to those specified in the Manual of Ohio EPA Surveillance Methods and Quality Assurance Practices (Ohio Environmental Protection Agency 2006d), Biological Criteria for the Protection of Aquatic Life, Volumes II - III (Ohio Environmental Protection Agency 1987b, 1989a, 1989b, 2006a, 2006b), The Qualitative Habitat Evaluation Index (QHEI); Rationale, Methods, and Application (Rankin 1989) , Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (Ohio EPA 2006c), and Ohio EPA Sediment Sampling Guide and Methodologies (Ohio EPA 2001).

Determining Use Attainment

Use attainment status is a term describing the degree to which environmental indicators are either above or below criteria specified by the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1). Assessing aquatic use attainment status involves a primary reliance on the Ohio EPA biological criteria (OAC 3745-1-07; Table 7-15). These are confined to ambient assessments and apply to rivers and streams outside of mixing zones. Numerical biological criteria are based on multimetric biological indices including the Index of Biotic Integrity (IBI) and modified Index of Well-Being (MIwb), indices measuring the response of the fish community, and the Invertebrate Community Index (ICI), which indicates the response of the macroinvertebrate community. Three attainment status results are possible at each sampling location - full, partial, or non-attainment. Full attainment means that all of the applicable indices meet the biocriteria. Partial attainment means that one or more of the applicable indices fails to meet the biocriteria. Non-attainment means that none of the applicable indices meet the biocriteria or one of the organism groups reflects poor or very poor performance. An aquatic life use attainment table (Table 1) is constructed based on the sampling results and is arranged from upstream to downstream and includes the sampling locations indicated by river mile, the applicable biological indices, the use attainment status (i.e., full, partial, or non), the Qualitative Habitat Evaluation Index (QHEI), and a sampling location description. All biological results were compared to WWH biocriteria for the Erie-Ontario Lake Plain ecoregion.

Stream Habitat Evaluation

Physical habitat is evaluated using the Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio EPA for streams and rivers in Ohio (Rankin 1989, 1995; Ohio EPA 2006c). Various attributes of the available habitat are scored based on their overall importance to the establishment of viable, diverse aquatic faunas. Evaluations of type and quality of substrate, amount of instream cover, channel morphology, extent of riparian canopy, pool and riffle development and quality, and stream gradient are among the metrics used to evaluate the characteristics of a stream segment, not just the characteristics of a single sampling site. As such, individual sites may have much poorer physical habitat due to a localized disturbance yet still support aquatic communities closely resembling those sampled at adjacent sites with better habitat, provided water quality conditions are similar. QHEI scores from hundreds of segments around the state have indicated that values higher than 60 were generally conducive to the establishment of warmwater faunas while those which scored in excess of 75-80 often typify habitat conditions which have the ability to support exceptional faunas.

Sediment and Surface Water Assessment

Fine grain sediment samples were collected multi-incrementally in the upper four inches of bottom material at each location using decontaminated stainless steel scoops. Decontamination of sediment sampling equipment followed the procedures outlined in the Ohio EPA sediment sampling guidance manual (Ohio EPA 2001). Sediment incremental samples were homogenized in stainless steel pans, transferred into glass jars with teflon lined lids, placed on ice (to maintain 4°C) in a cooler, and shipped to an Ohio EPA contract lab, VAP certified. Sediment data are reported on a dry weight basis. Surface water samples were collected directly into appropriate containers, preserved and delivered to the same Ohio EPA contract lab. Surface water samples were collected twice from each location from the upper 12 inches of water. Collected water was preserved using appropriate methods, as outlined in Parts II and III of the Manual of Ohio EPA Surveillance Methods and Quality Assurance Practices (Ohio EPA 2006d). Surface water samples were evaluated using comparisons to Ohio Water Quality Standards criteria, reference conditions, or published literature. Sediment evaluations were conducted using guidelines established in MacDonald *et al.* (2000) and USEPA Region 5 Ecological Data Quality Levels - EDQLs (1998), along with a comparison of metals results to Ohio Sediment Reference Values (Ohio EPA 2003).

Macroinvertebrate Community Assessment

Macroinvertebrates were collected from artificial substrates and from the natural habitats at all five stream sites. The artificial substrate collection provided quantitative data and consisted of a composite sample of five modified Hester-Dendy multiple-plate samplers colonized for six weeks. At the time of the artificial substrate collection, a qualitative multihabitat composite sample was also collected. This sampling effort consisted of an inventory of all observed macroinvertebrate taxa from the natural habitats at each site with no attempt to quantify populations other than notations on the predominance of specific taxa or taxa groups within major macrohabitat types (e.g., riffle, run, pool, margin). Detailed discussion of macroinvertebrate field and laboratory procedures is contained in Biological Criteria for the Protection of Aquatic Life: Volume III, Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities (Ohio EPA 1989a, 2006b).

Fish Community Assessment

Fish were sampled twice at each site using pulsed DC electrofishing methods. The Mahoning River was sampled using the boat electrofishing method, with sampling distances of 500 meters. Yellow Creek sites were sampled using the wading method, and sampling distances varied between 170 and 200 meters. Fish were processed in the field, and included identifying each individual to species, counting, weighing, and recording any external abnormalities. Discussion of the fish community assessment methodology used in this report is contained in Biological Criteria for the Protection of Aquatic Life: Volume III, Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities (Ohio EPA 1989a).

Field Instrument Calibration

Field instruments are calibrated using manufacturer recommended procedures along with procedures noted in the Manual of Ohio EPA Surveillance Methods and Quality Assurance Practices (2006d) and Biological Criteria for the Protection of Aquatic Life, Volume III (1989b). Laser rangefinders, used to measure sampling distance, were calibrated once at the Groveport Field Facility prior to summer field sampling activities. Fish weighing scales were checked against certified weights once per week during the field season.

Causal Associations

Using the results, conclusions, and recommendations of this report requires an understanding of the methodology used to determine the use attainment status and assigning probable causes and sources of impairment. The identification of impairment in rivers and streams is straightforward - the numerical biological criteria are used to judge aquatic life use attainment and impairment (partial and nonattainment). The rationale for using the biological criteria, within a weight of evidence framework, has been extensively discussed elsewhere (Karr et al. 1986; Karr 1991; Ohio EPA 1987a,b; Yoder 1989; Miner and Borton 1991; Yoder 1991; Yoder 1995). Describing the causes and sources associated with observed impairments relies on an interpretation of multiple lines of evidence including water chemistry data, sediment data, habitat data, effluent data, land use data, and biological results (Yoder and Rankin 1995). Thus the assignment of principal causes and sources of impairment in this report represent the association of impairments (based on response indicators) with stressor and exposure indicators. The reliability of the identification of probable causes and sources is increased where many such prior associations have been identified, or have been experimentally or statistically linked together. The ultimate measure of success in water resource management is the restoration of lost or damaged ecosystem attributes including aquatic community structure and function. While there have been criticisms of misapplying the metaphor of ecosystem "health" compared to human patient "health" (Suter 1993), in this document we are referring to the process for evaluating biological integrity and causes or sources associated with observed impairments, not whether human health and ecosystem health are analogous concepts.

RESULTS

Surface Water Quality

Chemical analyses were conducted on surface water samples collected on August 15-16 and September 25-26, 2006 from five locations in the study area (Table 3, Appendix Tables 1 - 2). Surface water samples were analyzed for total analyte list inorganics (metals), PCBs, volatile organic compounds (Mahoning River only), and semivolatile organic compounds. Parameters which were in exceedence of Ohio WQS criteria are reported in Table 3.

For the three Mahoning River and two Yellow Creek sampling locations, there was one exceedance of the Ohio WQS human health nondrinking criterion for mercury. This one exceedance occurred in the Mahoning River adjacent to the former

YS&T Campbell pickling waste site. The mercury value was an estimated concentration because the value was reported below the instrument reporting limit. None of the chemicals measured in this study exceeded criteria protective of the Warmwater Habitat aquatic life use. Concentrations of nearly all of the organic parameters tested (volatiles, semivolatiles, pesticides, and PCBs) were reported as not detected. In addition, metals concentrations were very low, with over half of the tested parameters less than lab detection Parameters with measurable limits. concentrations were below applicable life Ohio WQS criteria. aquatic Nutrients, ammonia-N, dissolved oxygen and bacteriological parameters were not tested as part of this evaluation.

Sediment Quality

 Table 3. Exceedences of Ohio Water Quality Standards criteria (OAC3745-1) for chemical/physical parameters measured in the Mahoning River and Yellow Creek, 2006.

Stream/River Mile	Parameter (value – ug/l)
Mahoning River	
RM 17.0	None
RM 16.5	Mercury (0.181J*)
RM 16.1	None
Yellow Creek	
RM 0.4	None
RM 0.1	None

* Exceedance of the Human Health nondrinking water quality criterion.

J Analyte positively identified, but is below the instrument reporting limit.

Sediment samples were collected at three locations in the Mahoning River and two locations in Yellow Creek by the Ohio EPA in September, 2006. Sampling locations were co-located at biological sampling sites. All stream sampling locations are indicated by river mile in Figure 2. Samples were analyzed for volatile organic compounds (Mahoning River only), semivolatile organic compounds, PCBs, total analyte list inorganics, diesel range organics, gasoline range organics, and cyanide. Specific chemical parameters tested and results are listed in Appendix Table 3. Sediment data were evaluated using guidelines established in *Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems* (MacDonald *et.al.* 2000), *Ohio Specific Sediment Reference Values (SRVs)* for metals (Ohio EPA 2003), and *Ecological Data Quality Levels (USEPA 1998)*. The consensus-based sediment guidelines define two levels of ecotoxic effects. A *Threshold Effect Concentration* (TEC) is a level of sediment chemical quality below which harmful effects are unlikely to be observed. A *Probable Effect Concentration* (PEC) indicates a level above which harmful effects are likely to be observed.

Volatile organic compounds (VOCs) were measured at three Mahoning River locations (VOCs were not measured in sediments from Yellow Creek). Nearly all of the VOC results were reported not detected at or above the laboratory detection limit. Three VOC parameters reported above screening benchmarks included 2-butanone, ethylbenzene, and naphthalene (Table 4). 2-butanone is a typical lab contaminant.

Detectable levels of metals, semivolatile organic compounds, and PCBs are presented in Table 4. Sediment collected from all three locations in the Mahoning River (upstream, adjacent, and downstream from the former YS&T, Campbell Works, pickling line property) were considered likely to be harmful to sediment-dwelling organisms (MacDonald *et.al.* 2000). At all three sediment sampling locations, highly elevated levels of polycyclic aromatic hydrocarbons (PAHs) were observed (Table 4). Metals parameters were elevated at all three locations in the Mahoning River, with the highest levels reported adjacent to

and downstream from the YS&T, Campbell Works, pickling line. PCB measurements revealed one Aroclor parameter, 1260, highly elevated in sediments adjacent to and downstream from the pickling line area. The large number of chemical compounds exceeding PEC levels at all Mahoning River locations suggest toxic sediment levels. Disturbance of the sediments from the Mahoning River released oil to the water surface. Diesel range organics were measured at elevated levels at all Mahoning River sites (Appendix Table 3). The contamination of the Mahoning River sediments in the study area likely contributed to the impairment observed in the biological community.

Sediment sampling in Yellow Creek occurred at two locations, with tested parameters including metals, semivolatile organic compounds, total petroleum hydrocarbons, and PCBs (Appendix Table 3, Table 4). Highly elevated levels of PAH compounds were primarily noted at the upstream site at RM 0.4. Metals concentrations were above TEC levels primarily at the downstream location at RM 0.1. One slightly elevated PCB Aroclor, 1260, was observed at RM 0.1 in Yellow Creek. Diesel range organics were measured at both sites in Yellow Creek, but values were considered low. Sediment samples were sampled using a "worst case" scenario by focusing on depositional areas of fine grain material. These areas typically are represented by higher contaminant levels, compared to sands and gravels. Both sediment sampling sites in Yellow Creek were almost devoid of fine grain material, making it difficult to meet lab volume requirements for the tests performed.

Table 4. Chemical parameters measured above screening levels in sediment samples collected by Ohio EPA from the Mahoning River and Yellow Creek, September, 2006. Contamination levels were determined for parameters using either consensusbased sediment quality guidelines (MacDonald et.al. 2000) or ecological data quality levels (EDQLs) for RCRA Appendix IX constituents (USEPA 1998). Sediment reference values are listed in the Ohio EPA Ecological Risk Assessment Guidance (2003). Shaded numbers indicate values above the following: Threshold Effect Concentration -TEC (blue), Probable Effect Concentration - PEC (red), and EDQL (green). Sampling locations are indicated by river mile (RM).

		Mahonii	Yellow Creek			
Parameter	RM 17.0	RM 16.5	RM 16.1	RM 16.1 Duplicate	RM 0.4	RM 0.1
Mercury	0.211J	3.42	0.679	0.725	0.0163J	0.0884J
Silver	1.21J	0.943J	2.29J	2.74J	0.732J	0.52J
Arsenic	11.8	12.9	27	34.1	5.22	13
Cadmium	0.888	1.05J	2.98	3.61	0.441J	1.28
Chromium	84.4	109	122	142	56.2	64.4
Copper	100	91	178	210	15.4	37.6
Nickel	44.1	49.4	72.2	78.6	8.96	23.1
Lead	125	159	318	406	33.7	125
Zinc	393	629	1110	1320	85.1	346
2-Butanone	<4.94	24.3	<29	167	NA	NA
Ethylbenzene	<0.987	<0.976	<5.81	9.62J	NA	NA
Naphthalene	17.6E	9E	135E	190	NA	NA
Phenanthrene	4690	4010	2350J	3500	2850J	<2260
Fluoranthene	9370	9210	3140	5390	5670	4840
Pyrene	5620	5320	1210J	2990	3550	<2260
Benzo(a)anthracene	3980	4010	1330J	2630J	1910J	<2260
Chrysene	4200	4080	1670J	2840	2360J	<2260
Bis(2-ethylhexyl)phthalate	<1740	<1850	<1190	4260	<1530	<2260
Benzo(k)fluoranthene	3330J	3310J	<1190	2260J	2200J	<2260
Benzo(a)pyrene	3850	3820	1260J	2550J	1800J	<2260
Aroclor 1260	<15.1	683	793	821	<13.3	91.5

J - The analyte was positively identified, but the quantitation was below the reporting limit (RL).

E - Estimated concentration due to sample matrix interference.

< - Not detected at or above the method detection limit (MDL value reported with the less than symbol).

Stream Physical Habitat

Physical habitat was evaluated in the Mahoning River and Yellow Creek at each biological sampling location. Physical habitat was assessed using the Qualitative Habitat Evaluation Index (QHEI); scores are detailed in Table 5.

Mahoning River sampling locations were represented by channel impounded conditions. This resulted in largely a pool habitat, although about 10 percent of the most downstream sampling zone was run habitat. All three sites were composed of a natural channel; however, it was nearly 100 percent pool habitat. The lack of riffle areas at all three sampling sites reduced the QHEI scores compared with natural free-flowing rivers. Surrounding land use was largely commercial/industrial/urban. Silt and muck substrates predominated the two most upstream locations (RMs 17.0 and 16.5), while RM 16.1 had bottom substrates composed of cobble and gravel. Sediment deposition was restricted to areas along both banks. River flows in the Mahoning River are regulated by several reservoirs, with minimum base flows higher in the summer than during the winter - opposite of natural conditions in Ohio. QHEI scores for the Mahoning River sites ranged between 46.5 and 54.0. These scores are indicative of fair river habitat and limit the potential to support WWH biological communities.

Physical habitat of Yellow Creek was evaluated at RMs 0.4 and 0.1. Substrates were predominated by gravel, cobble and boulders in a natural channel. The sampling zones were represented by extensive riffle/run areas and several moderately deep pools. Floodplain encroachment was obvious along the entire lower 0.5 miles of Yellow Creek, as evidenced by extensive artificial fill material along both banks of the stream. QHEI scores ranged between 67.0 and 71.5 and were indicative of good stream habitat, and adequate for supporting a WWH biological community. The lower 0.5 miles of Yellow Creek is located immediately downstream from a small impoundment at Yellow Creek park.

Table 5. Qualitative Habitat Evaluation Index (QHEI) scores and attributes for sampling locations in the Mahoning River and Yellow Creek, 2006.

			V	VWH A	ttributes	5			MW	'H Attr	ibutes	5					
			д об		n tse ess		High	Influenc	ce	М	odera	te Influ	uenc	е			
River	<u>ey</u> <u>HEI</u> ompone	nts Gradient	o Channelization or Recoverer culde //Cobble/Gravel Substrat It Free Substrates	ood/Excellent Substrates oderate/High Sinuosity tensive/Moderate Cover	ast Current/Eutres ow-Normal Overall Emtreccec axDepth > 40 cm ow-Normal Rittle Embeddedni	otal WWH Attributes	hannelized or No Recovery It/MuckSubstrates	o Sinuosity Jarse/No Cover 3x Depth < 40 cm (MD, HM)	tal H.I. MMH Attributes	ecovering Channel say/Moderate Sitt Cover and Substrates (Boat)	ardpan Substrate Origin linPoor Development w Sinuosity	nly 1-2 Cover Types termittent and Poor Pools o Fast Current	gh/Mod. Overall Embeddedness	jrimuu. Kiille Ernbeuxeurless Riffle	tal M.L. M.M.H. Attributes	MHH+1).(MMH+1) Ratio	MH ML+1),(WWH+1), Ratio
Mile	QHEI	(ft/mile)	žάσ	σΞώι	. São	1	ប៊ភ	ZԾĔ	1	ѽĬӥ	ΪŰϤ	δΞŽ	Ξ.Ξ	ť2	₽	Ð	Ð
(18-001) Mahonir	ng River															
Year:	2006																
17.0	46.5	0.10				2	•	•	2	•	• •	•	•	•	6	1.00	3.00
16.5	47.5	0.10				2	•	•	2	•	• •	•	•	•	б	1.00	3.00
16.1	54.0	0.10				4		•	1	•	• •	•	•	•	б	0.40	1.60
(18-007) Yellow	Creek															
Year:	2006																
0.4	67.0	58.82				9			0	•	•				2	0.10	0.30
0.1	71.5	100.0				9			0	•					1	0.10	0.20

Fish Community

A total of 2,985 fish representing 27 species were collected from the Mahoning River and Yellow Creek between August and September, 2006. Relative numbers and species collected per location are presented in Appendix Table 5 and IBI metrics are presented in Appendix Table 4. Sampling locations were evaluated using Warmwater Habitat biocriteria. For the Mahoning River, sampling locations were selected to assess contributions of contaminants from the former Youngstown Sheet and Tube, Campbell Works – pickling line area. Yellow Creek sampling locations were used to assess potential contaminant concerns in the CASTLO Industrial Park - west area, land formerly a part of the Youngstown Sheet and Tube Co., Struthers Works steel mill.

Fish communities ranged from poor to fair in the Mahoning River. Results from all three fish sampling locations indicated comparable quality from upstream to downstream, with no obvious trends associated with the former Youngstown Sheet and Tube, Campbell Works, pickling line property. IBI scores were in the poor range in the Mahoning River, with scores of 25, 25, and 24, upstream to downstream, respectively. These IBI values did not achieve the ecoregional biocriterion established for Warmwater Habitat (WWH) streams and rivers in Ohio (Table 6). Modified Index of Well-Being scores were in the poor to fair range, with values of 6.0, 6.4, and 5.9. These MIwb scores also did not achieve the ecoregional biocriterion established for Warmwater Habitat (WWH) streams and rivers in Ohio. External anomalies on fish (deformities, eroded fins, lesions, tumors) occurred at elevated levels (4-11 %) in the fish communities of the Mahoning River. Along with elevated DELT anomalies, the low number of fish per site and absence of relatively pollution sensitive suckers contributed to the poor fish performance. Past Ohio EPA fish collections included samples collected at RM 16.3 during 1994, where the IBI and MIwb scores were 16 and 4.2, respectively. The 2006 results from RM 16.1 (IBI=24, MIwb=5.9) revealed an improvement in the fish community compared with 1994, although results are still considered reflective of poor water and sediment quality.

Yellow Creek fish communities at both sampling locations achieved the WWH ecoregion biocriteria. IBI scores ranged from 43 to 44, and MIwb scores ranged from 7.7 to 8.6, all within the good to marginally good range. The CASTLO Industrial Park West property did not have a negative impact on the ecological condition of the fish communities of Yellow Creek.

Table 6.	Fish community summaries based on pulsed D.C. electrofishing sampling conducted by Ohio EPA in the Mahoning River and
	YellowCreek from August – September, 2006. Relative numbers and weight are per 0.3 km for wading sites and 1.0 km for boat
	sites. The applicable aquatic life use designation is WWH.

<i>Stream</i> River Mile	Sampling Method	Species (Mean)	Species (Total)	Relative Number	Relative Weight (kg)	QHEI	Modified Index of Well-Being	Index of Biotic Integrity	Narrative Evaluation	
Mahoning Riv	/er									
17.0	Wading	12	16	163	63.03	46.5	<u>6.0</u> *	<u>25</u> *	Poor	
16.5	Wading	12	15	178	31.06	47.5	6.4*	<u>25</u> *	Poor/Fair	
16.1	Wading	11.5	15	92	51.73	54.0	<u>5.9</u> *	<u>24</u> *	Poor	
Yellow Creek										
0.4	Wading	15	17	1676	13.41	67.0	8.6	43	Good	
0.1	Wading	16.5	19	490	5.41	71.5	7.7 ^{ns}	44	Good/Marginally Good	

Ecorogian Digaritaria	Eria Ontoria Laka Dlain (
ECOLECION DIOCHLENA.	Elle Unitario Lake Flain (EULEI
		/

INDEX - Site Type	WWH	EWH
IBI: Wading/Boat	38/ 40	50/ 48
MIwb: Wading/ Boat	7.9/ 8.7	9.4/ 9.6

* Significant departure from ecoregion biocriterion; poor and very poor results are underlined. Nonsignificant departure from biocriterion (≤ 4 IBI units; ≤ 0.5 Mlwb units).

Macroinvertebrate Community

The macroinvertebrate communities at three Mahoning River sites and two Yellow Creek sites were sampled in 2006 using qualitative (multi-habitat composite) and quantitative (artificial substrate) sampling protocols. Results are summarized in Table 7. The ICI metrics with the associated scores for the Erie-Ontario Lake Plain ecoregion and the raw data are attached as Appendix Tables 6 and 7.

The macroinvertebrate community from the three Mahoning River sites (RMs 17.0, 16.5, and 16.1) were evaluated as fair with an ICI score of 22 for all the sites, indicative of non-attainment of the WWH use. The macroinvertebrate sampling results from the three Mahoning River sites did not show any trends related to the former YS&T, Campbell Works, pickling line property. Macroinvertebrate sampling in 2002 and 2003 from locations between RMs 16.5 and 14.4 produced similar results with all sites evaluated as fair. In 1994 macroinvertebrate samples from RMs 19.4 to 15.5 were evaluated as poor with ICI scores between 6 and 10.

The macroinvertebrate community from Yellow Creek at the RM 0.4 sampling location was evaluated as good with an ICI of 38. At the RM 0.1 site the macroinvertebrate community was evaluated as fair with an ICI of 28. The downstream site had a reduced number of caddisfly and dipteran taxa, reduced percentage of caddisflies and an increased percentage of tolerant organisms. The decline in the macroinvertebrate community at the RM 0.1 site appeared to be related to an intermittent discharge high in suspended solids that was observed when the HD sampler was collected on September 25, 2006.

Stream/ River Mile	Density Number/ft ²	Total Taxa	Quantitative Taxa	Qualitative Taxa	Qualitative EPT ^a	ICI	Evaluation			
Mahoning River										
17.0	229	40	37	14	2	22	Fair			
16.5	189	42	38	18	3	22	Fair			
16.1	221	40	29	27	7	22	Fair			
Yellow Creek										
0.4	412	47	7 35 22 6		6	38	Good			
0.1	242	38	28	24	7	28	Fair			

 Table 7. Summary of macroinvertebrate data collected from artificial substrates (quantitative sampling) and natural substrates (qualitative sampling) in the Mahoning River and Yellow Creek, 2006.

Ecoregion Biocriteria: Erie Ontario Lake Plain (EOLP) (Ohio Administrative Code 3745-1-07, Table 7-15)							
INDEX	WWH	EWH					
ICI	34	46					

^a EPT=total Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) taxa richness, a measure of pollution sensitive organisms.

* Significant departure from ecoregion biocriterion; poor and very poor results are underlined.

^{ns} Nonsignificant departure from biocriterion (<4 ICI units).

REFERENCES

- Karr, J. R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecological Applications 1(1): 66-84.
- Karr, J.R., K.D. Fausch, P.L. Angermier, P.R. Yant, and I.J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. III. Nat. Hist. Surv. Spec. Publ. 5. 28 pp.
- MacDonald, D., C. Ingersoll, T. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxical.: Vol.39, 20-31.
- Miner R. and D. Borton. 1991. Considerations in the development and implementation of biocriteria, Water Quality Standards for the 21st Century, U.S. EPA, Offc. Science and Technology, Washington, D.C., 115.
- Ohio Environmental Protection Agency. 2006a. 2006 updates to Biological Criteria for the Protection of Aquatic Life: Volume II and Volume II Addendum. Users manual for biological field assessment of Ohio surface waters. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2006b. 2006 updates to Biological Criteria for the Protection of Aquatic Life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2006c. Methods for assessing habitat in flowing waters: Using the Qualitative Habitat Evaluation Index (QHEI). Ohio EPA Tech. Bull. EAS/2006-06-1. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2006d. Ohio EPA manual of surveillance methods and quality assurance practices, updated edition. Division of Environmental Services, Columbus, Ohio.
- Ohio Environmental Protection Agency. 2003. Ecological risk assessment guidance manual. Feb. 2003. Division of Emergency and Remedial Response, Columbus, Ohio.
- Ohio Environmental Protection Agency. 2001. Sediment sampling guide and methodologies, 2nd edition. Nov. 2001. Division of Surface Water, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989a. Addendum to Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989b. Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Div. Water Quality Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 1987a. Biological criteria for the protection of aquatic life: Volume I. The role of biological data in water quality assessment. Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1987b. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pp. 181-208. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.

- Rankin, E.T. 1989. The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Suter, G.W., II. 1993. A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry, 12: 1533-1539.
- United States Environmental Protection Agency (1998). Region 5, final technical approach for developing ecological data quality levels for RCRA Appendix IX constituents and other significant contaminants of ecological concern. April, 1998.
- Yoder, C.O. 1995. Policy issues and management applications for biological criteria, pp. 327-344. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C. O. 1991. Answering some concerns about biological criteria based on experiences in Ohio, *in* G. H. Flock (ed.) Water quality standards for the 21st century. Proceedings of a National Conference, U. S. EPA, Office of Water, Washington, D.C.
- Yoder, C.O. 1989. The development and use of biological criteria for Ohio surface waters. U.S. EPA, Criteria and Standards Div., Water Quality Stds. 21st Century, 1989: 139-146.
- Yoder, C.O. and E.T. Rankin. 1995. The role of biological criteria in water quality monitoring, assessment, and regulation. Environmental Regulation in Ohio: How to Cope With the Regulatory Jungle. Inst. of Business Law, Santa Monica, CA. 54 pp.

Appendix Table 1. Results of chemical surface water sampling conducted by Ohio EPA in the Mahoning River and Yellow Creek, August 15-16, 2006. Less than values were reported by the lab as not detected at or above the method detection limit.

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow
	River	River	River	River	Creek	Creek
River Mile	17.0	16.5	16.1	16.1	0.4	0.1
Date Sampled	8/16/2006	8/16/2006	8/16/2006	8/16/2006	8/15/2006	8/15/2006
Time Sampled	1:40 PM	1:30 PM	1:20 PM	1:20 PM	3:50 PM	1:45 PM
TAL Metals (ug/l)				DUPLICATE		
Mercury	<0.1	0.181J	<0.1	<0.1	<0.1	<0.1
Aluminum	721	193	446	364	764	282
Silver	<5	<5	<5	<5	<5	<5
Arsenic	9.25J	7.26J	5.02J	9.34J	9.31J	10.2
Barium	29.9	27.3	28.1	28.2	27.5	24.9
Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	46,700	46,000	44,000	45,300	47,100	49,400
Cadmium	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Cobalt	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chromium	2.91J	<2.5	2.78J	<2.5	<2.5	<2.5
Copper	5.85J	<5	5.47J	<5	<5	<5
Iron	964	512	1010	896	536	263
Potassium	5330	5250	5200	5310	3670	3890
Magnesium	11,500	11,400	11,000	11,500	13,000	13,300
Manganese	321	301	308	314	66.7	44.5
Sodium	39,100	38,800	38,200	38,900	27,600	28,500
Nickel	<5	<5	<5	<5	<5	<5
Lead	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Vanadium	5.27J	6.01J	<5	5.84J	5.72J	5.34J
Zinc	29.3	11.7J	14.7J	14.1J	11.8J	7.32J
Antimony	0.392J	0.40J	0.412J	0.411J	0.434J	0.453J
Selenium	<10	<10	<25	<25	<25	<25
Thallium	0.537	0.569	0.565	0.551	0.211	0.417
Volatile Organic Analytes (ug/l)						
Acetone	2.77J	2.55J	<2.5	<2.5	NA	NA
Benzene	<0.125	<0.125	0.234J	0.236J	NA	NA
Bromobenzene	<0.125	<0.125	<0.125	<0.125	NA	NA
Bromochloromethane	<0.2	<0.2	<0.2	<0.2	NA	NA
Bromodichloromethane	<0.25	<0.25	<0.25	<0.25	NA	NA
Bromoform	<0.5	<0.5	<0.5	<0.5	NA	NA
Bromomethane	<0.5	<0.5	<0.5	<0.5	NA	NA
2-Butanone	<2.5	<2.5	<2.5	<2.5	NA	NA
n-Butylbenzene	<0.25	<0.25	<0.25	<0.25	NA	NA
sec-Butylbenzene	<0.25	<0.25	<0.25	<0.25	NA	NA
tert-Butylbenzene	<0.25	<0.25	<0.25	<0.25	NA	NA
Carbon disulfide	<0.5	<0.5	<0.5	<0.5	NA	NA
Carbon tetrachloride	<0.25	<0.25	<0.25	<0.25	NA	NA
Chlorobenzene	<0.125	<0.125	<0.125	<0.125	NA	NA
Chlorodibromomethane	<0.25	<0.25	<0.25	<0.25	NA	NA
Chloroethane	<0.5	<0.5	<0.5	<0.5	NA	NA

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow
	River	River	River	River	Creek	Creek
River Mile	17.0	16.5	16.1	16.1	0.4	0.1
Date Sampled	8/16/2006	8/16/2006	8/16/2006	8/16/2006	8/15/2006	8/15/2006
Time Sampled	1:40 PM	1:30 PM	1:20 PM	1:20 PM	3:50 PM	1:45 PM
Volatile Organic Analytes (ug/l)				DUPLICATE		
2-Chloroethyl vinyl ether	<2	<2	<2	<2	NA	NA
Chloroform	0.715J	0.654J	0.703J	0.627J	NA	NA
Chloromethane	<0.25	<0.25	<0.25	<0.25	NA	NA
2-Chlorotoluene	<0.125	<0.125	<0.125	<0.125	NA	NA
4-Chlorotoluene	<0.25	<0.25	<0.25	<0.25	NA	NA
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	NA	NA
1,2-Dibromomethane	<0.25	<0.25	<0.25	<0.25	NA	NA
Dibromomethane	<0.25	<0.25	<0.25	<0.25	NA	NA
1,2-Dichlorobenzene	<0.125	<0.125	<0.125	<0.125	NA	NA
1,3-Dichlorobenzene	<0.25	<0.25	<0.25	<0.25	NA	NA
1,4-Dichlorobenzene	<0.125	<0.125	<0.125	<0.125	NA	NA
Dichlorodifluoromethane	<0.25	<0.25	<0.25	<0.25	NA	NA
1,1-Dichloroethane	<0.125	<0.125	<0.125	<0.125	NA	NA
1,2-Dichloroethane	<0.25	<0.25	<0.25	<0.25	NA	NA
1,1-Dichloroethene	<0.5	<0.5	<0.5	<0.5	NA	NA
cis-1,2-Dichloroethene	<0.25	<0.25	<0.25	<0.25	NA	NA
trans-1,2-Dichloroethene	<0.25	<0.25	<0.25	<0.25	NA	NA
1,2-Dichloropropane	<0.2	<0.2	<0.2	<0.2	NA	NA
1,3-Dichloropropane	<0.2	<0.2	<0.2	<0.2	NA	NA
2,2-Dichloropropane	<0.25	<0.25	<0.25	<0.25	NA	NA
cis-1,3-Dichloropropene	<0.25	<0.25	<0.25	<0.25	NA	NA
trans-1,3-Dichloropropene	<0.5	<0.5	<0.5	<0.5	NA	NA
1,1-Dichloropropene	<0.25	<0.25	<0.25	<0.25	NA	NA
Ethylbenzene	<0.25	<0.25	<0.25	<0.25	NA	NA
2-Hexanone	<2.5	<2.5	<2.5	<2.5	NA	NA
Hexachlorobutadiene	<0.25	<0.25	<0.25	<0.25	NA	NA
Isopropylbenzene	<0.25	<0.25	<0.25	<0.25	NA	NA
p-Isopropyltoluene	<0.25	<0.25	<0.25	<0.25	NA	NA
4-Methyl-2-pentanone	<2.5	<2.5	<2.5	<2.5	NA	NA
Methylene chloride	<0.25	<0.25	<0.25	<0.25	NA	NA
Naphthalene	<0.2	<0.2	<0.2	<0.2	NA	NA
n-Propylbenzene	<0.125	<0.125	<0.125	<0.125	NA	NA
Styrene	<0.125	<0.125	<0.125	<0.125	NA	NA
1,1,1,2-Tetrachloroethane	<0.25	<0.25	<0.25	<0.25	NA	NA
1,1,2,2-Tetrachloroethane	<0.125	<0.125	<0.125	<0.125	NA	NA
Tetrachloroethene	<0.25	<0.25	<0.25	<0.25	NA	NA
Toluene	<0.25	<0.25	0.305J	0.276J	NA	NA
1,2,3-Trichlorobenzene	<0.125	<0.125	<0.125	<0.125	NA	NA
1,2,4-Trichlorobenzene	<0.2	<0.2	<0.2	<0.2	NA	NA
1,1,1-Trichloroethane	<0.25	<0.25	<0.25	<0.25	NA	NA
1,1,2-Trichloroethane	<0.25	<0.25	<0.25	<0.25	NA	NA
Trichloroethene	<0.25	<0.25	<0.25	<0.25	NA	NA
Trichlorofluoromethane	<0.25	<0.25	<0.25	<0.25	NA	NA
1,2,3-Trichloropropane	<0.75	<0.75	<0.75	<0.75	NA	NA
1,2,4-Trimethylbenzene	<0.25	<0.25	<0.25	<0.25	NA	NA
1,3,5-Trimethylbenzene	<0.25	<0.25	<0.25	<0.25	NA	NA

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow
	River	River	River	River	Creek	Creek
River Mile	17.0	16.5	16.1	16.1	0.4	0.1
Date Sampled	8/16/2006	8/16/2006	8/16/2006	8/16/2006	8/15/2006	8/15/2006
Time Sampled	1:40 PM	1:30 PM	1:20 PM	1:20 PM	3:50 PM	1:45 PM
Volatile Organic Analytes (ug/l)				DUPLICATE		
Vinyl acetate	<2.5	<2.5	<2.5	<2.5	NA	NA
Vinyl chloride	<0.25	<0.25	<0.25	<0.25	NA	NA
o-Xylene	<0.25	<0.25	<0.25	<0.25	NA	NA
m-,p-Xylene	<0.5	<0.5	<0.5	<0.5	NA	NA
Semi-volatile Organic Analytes (ug/l)						
Phenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
bis-(2-Chloroethyl) ether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2-Chlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
1,3-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
1,4-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Benzyl alcohol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
1,2-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2-Methylphenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
3-,4-Methylphenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
bis(2-Chloroisopropyl) ether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
N-Nitroso-di-n-propylamine	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Hexachloroethane	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Nitrobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Isophorone	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2-Nitrophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2,4-Dimethylphenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Benzoic acid	<12.5	<12.5	<12.5	<12.5	<12.5	<12.8
bis(2-Chloroethoxy)methane	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2,4-Dichlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
1,2,4-Trichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Naphthalene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
4-Chloroaniline	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Hexachlorobutadiene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
4-Chloro-3-methylphenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2-Methylnaphthalene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Hexachlorocyclopentadiene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2,4,6-Trichlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2,4,5-Trichlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2-Chloronaphthalene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2-Nitroaniline	<12.5	<12.5	<12.5	<12.5	<12.5	<12.8
Dimethylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Acenaphthylene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2,6-Dinitrotoluene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
3-Nitroaniline	<12.5	<12.5	<12.5	<12.5	<12.5	<12.8
Acenaphthene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
2,4-Dinitrophenol	<12.5	<12.5	<12.5	<12.5	<12.5	<12.8
4-Nitrophenol	<12.5	<12.5	<12.5	<12.5	<12.5	<12.8
Dibenzofuran	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow
	River	River	River	River	Creek	Creek
River Mile	17.0	16.5	16.1	16.1	0.4	0.1
Date Sampled	8/16/2006	8/16/2006	8/16/2006	8/16/2006	8/15/2006	8/15/2006
Time Sampled	1:40 PM	1:30 PM	1:20 PM	1:20 PM	3:50 PM	1:45 PM
Semi-volatile Organic Analytes (ug/l)				DUPLICATE		
2,4-Dinitrotoluene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Diethylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
4-Chlorophenyl-phenyl ether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Fluorene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
4-Nitroaniline	<12.5	<12.5	<12.5	<12.5	<12.5	<12.8
4,6-Dinitro-2-methylphenol	<12.5	<12.5	<12.5	<12.5	<12.5	<12.8
N-Nitrosodiphenylamine	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
4-Bromophenyl-phenylether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Hexachlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Pentachlorophenol	<12.5	<12.5	<12.5	<12.5	<12.5	<12.8
Phenanthrene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Anthracene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Di-N-butylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Fluoranthene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Pyrene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Butylbenzylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
3,3'-Dichlorobenzidine	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Benzo(a)anthracene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Chrysene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
bis(2-Ethylhexyl) phthalate	<3.0	<3.0	<3.0	<3.0	<3.0	<3.06
Di-n-octylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Benzo(b)fluoranthene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Benzo(k)fluoranthene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Benzo(a)pyrene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Indeno(1,2,3-cd)pyrene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Dibenzo(a,h)anthracene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
Benzo(g,h,i)perylene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.55
PCBs (ug/l)						
Aroclor 1016	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Aroclor 1221	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Aroclor 1232	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Aroclor 1242	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Aroclor 1248	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Aroclor 1254	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Aroclor 1260	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25

J - The analyte was positively identified, but the quantitation was below the reporting limit.

< - Not detected at or above the method detection limit (MDL value reported with the less than symbol).

Appendix Table 2. Results of chemical surface water sampling conducted by Ohio EPA in the Mahoning River and Yellow Creek, September 25-26, 2006. Less than values were reported by the lab as not detected at or above the method detection limit.

Stream	Mahoning	Mahoning	Mahoning	Yellow	Yellow
	River	River	River	Creek	Creek
River Mile	17.0	16.5	16.1	0.4	0.1
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006
Time Sampled	2:40 PM	2:10 PM	1:15 PM	6:30 PM	3:50 PM
TAL Metals (ug/l)					
Mercury	<0.1	<0.1	<0.1	<0.1	<0.1
Aluminum	333	323	321	86.8J	66.8J
Silver	<5	<5	<5	<5	<5
Arsenic	11.4	10.5	12.3	15.1	13.4
Barium	29.1	27.2	27	32.5	32
Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	41,400	38,200	38,700	68,100	66,500
Cadmium	<2.5	<2.5	<2.5	<2.5	<2.5
Cobalt	<2.5	<2.5	<2.5	<2.5	<2.5
Chromium	<2.5	<2.5	<2.5	<2.5	<2.5
Copper	<5	<5	<5	<5	<5
Iron	722	718	684	59.2J	53.6J
Potassium	5980	5610	5510	4060	4000
Magnesium	11,000	10,900	10,900	20,300	19,800
Manganese	127	116	113	36.8	28.9
Sodium	32,700	30,800	30,400	35,700	34,800
NICKEI	<5	<5	<5	<5	<5
Lead	<2.5	<2.5	<2.5	<2.5	<2.5
Zino	5.04J	C>	<5 0.54	0.10J	<0
Antimony	0.4821	9.935	9.545	<0 0 382 I	<5 0 444 I
Selenium	~25	~25	~25	~25	~50
Thallium	0 494	0.521	0 548	<23 0.507	0 549
manum	0.404	0.021	0.040	0.007	0.040
Volatile Organic Analytes (ug/l)					
Acetone	<2.5	<2.5	<2.5	NA	NA
Benzene	<0.125	<0.125	<0.125	NA	NA
Bromobenzene	<0.125	<0.125	<0.125	NA	NA
Bromochloromethane	<0.2	<0.2	<0.2	NA	NA
Bromodichloromethane	<0.25	<0.25	<0.25	NA	NA
Bromoform	<0.54	<0.54	<0.54	NA	NA
Bromomethane	<0.5	<0.5	<0.54	NA	NA
2-Butanone	<2.5	<2.5	<2.5	NA	NA
n-Butylbenzene	<0.25	<0.25	<0.25	NA	NA
sec-Butylbenzene	<0.25	<0.25	<0.25	NA	NA
tert-Butylbenzene	<0.25	<0.25	<0.25	NA	NA
Carbon disulfide	<0.5	<0.5	<0.5	NA	NA
Carbon tetrachloride	<0.25	<0.25	<0.25	NA	NA
Chlorobenzene	<0.125	<0.125	<0.125	NA	NA
Chlorodibromomethane	<0.25	<0.25	<0.25	NA	NA
Chloroethane	<0.5	<0.5	<0.5	NA	NA

Stream	Mahoning	Mahoning	Mahoning	Yellow	Yellow
	River	River	River	Creek	Creek
River Mile	17.0	16.5	16.1	0.4	0.1
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006
Time Sampled	2:40 PM	2:10 PM	1:15 PM	6:30 PM	3:50 PM
Volatile Organic Analytes (ug/l)					
2-Chloroethyl vinyl ether	<5	<5	<5	NA	NA
Chloroform	0.280J	0.242J	0.299J	NA	NA
Chloromethane	<0.25	<0.25	<0.25	NA	NA
2-Chlorotoluene	<0.125	<0.125	<0.125	NA	NA
4-Chlorotoluene	<0.25	<0.25	<0.25	NA	NA
1.2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	NA	NA
1.2-Dibromomethane	<0.25	<0.25	<0.25	NA	NA
Dibromomethane	<0.25	<0.25	<0.25	NA	NA
1.2-Dichlorobenzene	<0.125	<0.125	<0.125	NA	NA
1.3-Dichlorobenzene	<0.25	<0.25	<0.25	NA	NA
1.4-Dichlorobenzene	<0.125	<0.125	<0.125	NA	NA
Dichlorodifluoromethane	<0.25	<0.25	<0.25	NA	NA
1.1-Dichloroethane	<0.125	<0.125	<0.125	NA	NA
1.2-Dichloroethane	<0.25	< 0.25	<0.25	NA	NA
1.1-Dichloroethene	<0.5	< 0.5	< 0.5	NA	NA
cis-1.2-Dichloroethene	<0.25	<0.25	<0.25	NA	NA
trans-1.2-Dichloroethene	<0.25	< 0.25	<0.25	NA	NA
1.2-Dichloropropane	<0.2	<0.2	<0.2	NA	NA
1,3-Dichloropropane	<0.2	<0.2	<0.2	NA	NA
2.2-Dichloropropane	<0.25	<0.25	<0.25	NA	NA
cis-1,3-Dichloropropene	<0.25	<0.25	<0.25	NA	NA
trans-1,3-Dichloropropene	<0.5	<0.5	<0.5	NA	NA
1,1-Dichloropropene	<0.25	<0.25	<0.25	NA	NA
Ethylbenzene	<0.25	<0.25	<0.25	NA	NA
2-Hexanone	<2.5	<2.5	<2.5	NA	NA
Hexachlorobutadiene	<0.25	<0.25	<0.25	NA	NA
Isopropylbenzene	<0.25	<0.25	<0.25	NA	NA
p-lsopropyltoluene	<0.25	<0.25	<0.25	NA	NA
4-Methyl-2-pentanone	<2.5	<2.5	<2.5	NA	NA
Methylene chloride	<0.25	<0.25	<0.25	NA	NA
Naphthalene	<0.2	<0.2	<0.2	NA	NA
n-Propylbenzene	<0.125	<0.125	<0.125	NA	NA
Styrene	<0.125	<0.125	<0.125	NA	NA
1,1,1,2-Tetrachloroethane	<0.25	<0.25	<0.25	NA	NA
1,1,2,2-Tetrachloroethane	<0.125	<0.125	<0.125	NA	NA
Tetrachloroethene	<0.25	<0.25	<0.25	NA	NA
Toluene	<0.25	<0.25	<0.25	NA	NA
1,2,3-Trichlorobenzene	<0.125	<0.125	<0.125	NA	NA
1,2,4-Trichlorobenzene	<0.2	<0.2	<0.2	NA	NA
1,1,1-Trichloroethane	<0.25	<0.25	<0.25	NA	NA
1,1,2-Trichloroethane	<0.25	<0.25	<0.25	NA	NA
Trichloroethene	<0.25	<0.25	<0.25	NA	NA
Trichlorofluoromethane	<0.25	<0.25	<0.25	NA	NA
1.2.3-Trichloropropane	<0.5	< 0.5	<0.5	NA	NA

Stream	Mahoning	Mahoning	Mahoning	Yellow	Yellow
	River	River	River	Creek	Creek
River Mile	17.0	16.5	16.1	0.4	0.1
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006
Time Sampled	2:40 PM	2·10 PM	1.15 PM	6:30 PM	3:50 PM
Volatile Organic Analytes (ug/l)	2.1011	2.101 1	1.1011	0.0011	0.001 M
1.2.4-Trimethylbenzene	<0.25	<0.25	<0.25	NA	NA
1.3.5-Trimethylbenzene	<0.25	< 0.25	<0.25	NA	NA
Vinvl acetate	<2.5	<2.5	<2.5	NA	NA
Vinyl chloride	<0.25	<0.25	<0.25	NA	NA
o-Xylene	<0.25	<0.25	<0.25	NA	NA
m-,p-Xylene	<0.5	<0.5	<0.5	NA	NA
Semi-volatile Organic Analytes (ug/l)					
Phenol	<2.5	<2.5	<2.5	<2.5	<2.5
bis-(2-Chloroethyl) ether	<2.5	<2.5	<2.5	<2.5	<2.5
2-Chlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5
1,3-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5
1,4-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5
Benzyl alcohol	<2.5	<2.5	<2.5	<2.5	<2.5
1,2-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5
2-Methylphenol	<2.5	<2.5	<2.5	<2.5	<2.5
3-,4-Methylphenol	<2.5	<2.5	<2.5	<2.5	<2.5
bis(2-Chloroisopropyl) ether	<2.5	<2.5	<2.5	<2.5	<2.5
N-Nitroso-di-n-propylamine	<2.5	<2.5	<2.5	<2.5	<2.5
Hexachloroethane	<2.5	<2.5	<2.5	<2.5	<2.5
Nitrobenzene	<2.5	<2.5	<2.5	<2.5	<2.5
Isophorone	<2.5	<2.5	<2.5	<2.5	<2.5
2-Nitrophenol	<2.5	<2.5	<2.5	<2.5	<2.5
2,4-Dimethylphenol	<2.5	<2.5	<2.5	<2.5	<2.5
Benzoic acid	<12.5	<12.5	<12.5	<12.5	<12.5
bis(2-Chloroethoxy)methane	<2.5	<2.5	<2.5	<2.5	<2.5
2,4-Dichlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5
1,2,4-Trichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5
Naphthalene	<2.5	<2.5	<2.5	<2.5	<2.5
4-Chloroaniline	<2.5	<2.5	<2.5	<2.5	<2.5
Hexachlorobutadiene	<2.5	<2.5	<2.5	<2.5	<2.5
4-Chloro-3-methylphenol	<2.5	<2.5	<2.5	<2.5	<2.5
2-Methylnaphthalene	<2.5	<2.5	<2.5	<2.5	<2.5
Hexachlorocyclopentadiene	<2.5	<2.5	<2.5	<2.5	<2.5
2,4,6-I richlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5
2,4,5- I richlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5
2-Chloronaphthalene	<2.5	<2.5	<2.5	<2.5	<2.5
2-Nitroaniline	<12.5	<12.5	<12.5	<12.5	<12.5
Dimethylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5
	<2.5	<2.5	<2.5	<2.5	<2.5
	<2.5	<2.5	<2.5	<2.5	<2.5
	<12.5	<12.5	<12.5	<12.5	<12.5
	<2.5	<2.5	<2.5	<2.5	<2.5
	<12.5 ~12.5	<12.0	<12.5	<12.5	<12.0
	NIZ.0	NIZ.0	NIZ.0	NIZ.0	NIZ.0

Stream	Mahoning	Mahoning	Mahoning	Yellow	Yellow
	River	River	River	Creek	Creek
River Mile	17.0	16.5	16.1	0.4	0.1
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006
Time Sampled	2:40 PM	2:10 PM	1:15 PM	6:30 PM	3:50 PM
Semi-volatile Organic Analytes (ug/l)					
Dibenzofuran	<2.5	<2.5	<2.5	<2.5	<2.5
2,4-Dinitrotoluene	<2.5	<2.5	<2.5	<2.5	<2.5
Diethylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5
4-Chlorophenyl-phenyl ether	<2.5	<2.5	<2.5	<2.5	<2.5
Fluorene	<2.5	<2.5	<2.5	<2.5	<2.5
4-Nitroaniline	<12.5	<12.5	<12.5	<12.5	<12.5
4,6-Dinitro-2-methylphenol	<12.5	<12.5	<12.5	<12.5	<12.5
N-Nitrosodiphenylamine	<2.5	<2.5	<2.5	<2.5	<2.5
4-Bromophenyl-phenylether	<2.5	<2.5	<2.5	<2.5	<2.5
Hexachlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5
Pentachlorophenol	<12.5	<12.5	<12.5	<12.5	<12.5
Phenanthrene	<2.5	<2.5	<2.5	<2.5	<2.5
Anthracene	<2.5	<2.5	<2.5	<2.5	<2.5
Di-N-butylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5
Fluoranthene	<2.5	<2.5	<2.5	<2.5	<2.5
Pyrene	<2.5	<2.5	<2.5	<2.5	<2.5
Butylbenzylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5
3,3'-Dichlorobenzidine	<2.5	<2.5	<2.5	<2.5	<2.5
Benzo(a)anthracene	<2.5	<2.5	<2.5	<2.5	<2.5
Chrysene	<2.5	<2.5	<2.5	<2.5	<2.5
bis(2-Ethylhexyl) phthalate	<3.0	<3.0	<3.0	<3.0	<3.0
Di-n-octylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5
Benzo(b)fluoranthene	<2.5	<2.5	<2.5	<2.5	<2.5
Benzo(k)fluoranthene	<2.5	<2.5	<2.5	<2.5	<2.5
Benzo(a)pyrene	<2.5	<2.5	<2.5	<2.5	<2.5
Indeno(1,2,3-cd)pyrene	<2.5	<2.5	<2.5	<2.5	<2.5
Dibenzo(a,h)anthracene	<2.5	<2.5	<2.5	<2.5	<2.5
Benzo(g,h,i)perylene	<2.5	<2.5	<2.5	<2.5	<2.5
PCBs (ug/l)					
Aroclor 1016	<0.25	<0.25	<0.255	<0.25	<0.255
Aroclor 1221	<0.25	<0.25	<0.255	<0.25	<0.255
Aroclor 1232	<0.25	<0.25	<0.255	<0.25	<0.255
Aroclor 1242	<0.25	<0.25	<0.255	<0.25	<0.255
Aroclor 1248	<0.25	<0.25	<0.255	<0.25	<0.255
Aroclor 1254	<0.25	<0.25	<0.255	<0.25	<0.255
Aroclor 1260	<0.25	<0.25	<0.255	<0.25	<0.255

J - The analyte was positively identified, but the quantitation was below the reporting limit.

< - Not detected at or above the method detection limit (MDL value reported with the less than

Appendix Table 3. Results of Ohio EPA sediment sampling conducted in the Mahoning River and Yellow Creek, September 25-26, 2006. NA - not applicable. Shaded values exceed applicable TEC or EDQL screening levels.

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow			
	River	River	River	River	Creek	Creek	Scre	ening Benchm	arks
River Mile	17.0	16.5	16.1	16.1	0.4	0.1	Sediment	MacDonald	
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006	Reference	2000	USEPA
Time Sampled	3:00 PM	2:20 PM	1:20 PM	1:20 PM	6:35 PM	3:45 PM	Values (SRV)	TEC	EDQLs
TAL Metals (mg/kg)				Duplicate			. ,		
Mercury	0.211J	3.42	0.679	0.725	0.0163J	0.0884J	0.12	0.18	0.174
Aluminum	7,550	8,100	12,300	15,200	18,900	10,700	29,000	NA	NA
Silver	1.21J	0.943J	2.29J	2.74J	0.732J	0.52J	0.43	NA	0.5
Arsenic	11.8	12.9	27	34.1	5.22	13	25	9.79	5.9
Barium	78.4	81.2	130	161	156	112	190	NA	NA
Beryllium	0.628J	0.725J	1.06	1.27	3.06	1.18	0.8	NA	NA
Calcium	10,500	10,700	15,200	17,900	140,000	31,900	21,000	NA	NA
Cadmium	0.888	1.05J	2.98	3.61	0.441J	1.28	0.79	0.99	0.596
Cobalt	6.34	7.97	7.51	8.88	2.72	6.38	12	NA	50
Chromium	84.4	109	122	142	56.2	64.4	29	43.4	26
Copper	100	91	178	210	15.4	37.6	32	31.6	16
Iron	113,000	110,000	202,000	245,000	21,500	33,100	41,000	NA	NA
Potassium	1010	1080	1460	1820	1310	1640	6,800	NA	NA
Magnesium	2570	2740	3720	4540	22,000	5150	7,100	NA	NA
Manganese	892	1120	2540	3030	2370	2170	1,500	NA	NA
Sodium	140	148	190	228	1000	306	NA	NA	NA
Nickel	44.1	49.4	72.2	78.6	8.96	23.1	33	22.7	16
Lead	125	159	318	406	33.7	125	47	35.8	31
Vanadium	16.8	19.3	31.6	38.1	22.9	26.4	40	NA	NA
Zinc	393	629	1110	1320	85.1	346	160	121	120
Antimony	<0.0811	< 0.099	0.228J	0.155J	<0.0769	<0.109	1.3	NA	NA
Selenium	18.1	30.3	25.4	31.4	1.7	9.77	1.7	NA	NA
Thallium	0.734	0.802	1.42	1.79	0.0665	0.119	4.7	NA	NA
Volatile Organic Analytes (ug/kg)									
Acetone	38.7	105	145	646	NA	NA	NA	NA	453.37
Benzene	<0.987	<0.976	16J	23.1J	NA	NA	NA	NA	141.57
Bromobenzene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
Bromochloromethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
Bromodichloromethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	1.13
Bromoform	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	996.27
Bromomethane	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	NA
2-Butanone	<4.94	24.3	<29	167	NA	NA	NA	NA	136.96
n-Butylbenzene	1.46E	<0.976	47.9E	54.4J	NA	NA	NA	NA	NA
sec-Butylbenzene	<0.987	<0.976	37.4E	52.7J	NA	NA	NA	NA	NA

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow			
	River	River	River	River	Creek	Creek	Scre	Screening Benchmarks	
River Mile	17.0	16.5	16.1	16.1	0.4	0.1	Sediment	MacDonald	
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006	Reference	2000	USEPA
Time Sampled	3:00 PM	2:20 PM	1:20 PM	1:20 PM	6:35 PM	3:45 PM	Values (SRV)	TEC	EDQLs
Volatile Organic Analytes (ug/kg)				Duplicate					
tert-Butylbenzene	<0.987	25.0E	<5.81	<6.57	NA	NA	NA	NA	NA
Carbon disulfide	<0.987	<0.976	25.3J	63.5J	NA	NA	NA	NA	133.97
Carbon tetrachloride	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	35.73
Chlorobenzene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	61.94
Chlorodibromomethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	267.61
Chloroethane	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	58600
2-Chloroethyl vinyl ether	<3.95	<3.9	<23.2	<26.3	NA	NA	NA	NA	NA
Chloroform	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	27
Chloromethane	<3.95	<3.9	<23.2	<26.3	NA	NA	NA	NA	NA
2-Chlorotoluene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
4-Chlorotoluene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
1,2-Dibromo-3-chloropropane	<3.95	<3.9	<23.2	<26.3	NA	NA	NA	NA	19.98
1.2-Dibromomethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	12.37
Dibromomethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	0.0859
1,2-Dichlorobenzene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	231.32
1,3-Dichlorobenzene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	3010
1,4-Dichlorobenzene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	1450
Dichlorodifluoromethane	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	1.33
1,1-Dichloroethane	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	0.575
1,2-Dichloroethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	54.18
1,1-Dichloroethene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	23.27
cis-1,2-Dichloroethene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	208.94
1,2-Dichloropropane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	351.61
1,3-Dichloropropane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
2,2-Dichloropropane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
cis-1,3-Dichloropropene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	2.96
trans-1,3-Dichloropropene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	2.96
1,1-Dichloropropene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
Ethylbenzene	<0.987	<0.976	<5.81	9.62J	NA	NA	NA	NA	0.1
2-Hexanone	<4.94	<4.88	<29	<32.8	NA	NA	NA	NA	1010
Hexachlorobutadiene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	1380
Isopropylbenzene	<0.987	<0.976	12.2J	18.7J	NA	NA	NA	NA	NA
p-Isopropyltoluene	<0.987	<0.976	39.4J	38.1J	NA	NA	NA	NA	NA
4-Methyl-2-pentanone	<4.94	<4.88	<29	<32.8	NA	NA	NA	NA	544.37

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow			
	River	River	River	River	Creek	Creek	Scree	ening Benchm	arks
River Mile	17.0	16.5	16.1	16.1	0.4	0.1	Sediment	MacDonald	
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006	Reference	2000	USEPA
Time Sampled	3:00 PM	2:20 PM	1:20 PM	1:20 PM	6:35 PM	3:45 PM	Values (SRV)	TEC	EDQLs
Volatile Organic Analytes (ug/kg)				Duplicate					
Methylene chloride	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	1260
Naphthalene	17.6E	9E	135E	190	NA	NA	NA	NA	34.6
n-Propylbenzene	<0.987	<0.976	11.8E	17.7J	NA	NA	NA	NA	NA
Styrene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	444.96
1,1,1,2-Tetrachloroethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	10.89
1,1,2,2-Tetrachloroethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	29.08
Tetrachloroethene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	195.83
Toluene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	52,500
1,2,3-Trichlorobenzene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	246.85
1,1,2-Trichloroethane	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	673.51
Trichloroethene	<0.987	<0.976	<5.81	<6.57	NA	NA	NA	NA	179.56
Trichlorofluoromethane	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	3.07
1,2,3-Trichloropropane	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	8.35
1,2,4-Trimethylbenzene	2.33E	1.3E	46.6E	66.7	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene	1.53E	<0.976	26.9E	24.2J	NA	NA	NA	NA	NA
Vinyl acetate	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	12.95
Vinyl chloride	<1.97	<1.95	<11.6	<13.1	NA	NA	NA	NA	2
o-Xylene	<0.987	<0.976	18.1J	22.7J	NA	NA	NA	NA	1880
m-,p-Xylene	<0.987	<0.976	14.5J	20.5J	NA	NA	NA	NA	1880
Semi-volatile Organic Analytes (ug	J/kg)								
Phenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	27.26
bis-(2-Chloroethyl) ether	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	211.96
2-Chlorophenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	11.7
1,3-Dichlorobenzene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	3010
1,4-Dichlorobenzene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	1450
Benzyl alcohol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	33.94
1,2-Dichlorobenzene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	231.32
2-Methylphenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	0.826
3-,4-Methylphenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	0.808
bis(2-Chloroisopropyl) ether	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	NA
N-Nitroso-di-n-propylamine	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	0.217
Hexachloroethane	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	2230

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow			
	River	River	River	River	Creek	Creek	Scre	ening Benchma	arks
River Mile	17.0	16.5	16.1	16.1	0.4	0.1	Sediment	MacDonald	
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006	Reference	2000	USEPA
Time Sampled	3:00 PM	2:20 PM	1:20 PM	1:20 PM	6:35 PM	3:45 PM	Values (SRV)	TEC	EDQLs
Semi-volatile Organic Analytes (ug	ı/kg)			Duplicate					
Nitrobenzene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	487.6
Isophorone	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	422.3
2-Nitrophenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	7.77
2,4-Dimethylphenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	304.53
Benzoic acid	<6950	<7380	<4780	<5440	<6100	<9030	NA	NA	NA
bis(2-Chloroethoxy)methane	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	349.71
2,4-Dichlorophenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	133.63
1,2,4-Trichlorobenzene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	11700
Naphthalene	<1740	<1850	<1190	<1360	<1530	<2260	NA	176	34.6
4-Chloroaniline	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	146.08
Hexachlorobutadiene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	1380
4-Chloro-3-methylphenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	388.18
2-Methylnaphthalene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	20.2
Hexachlorocyclopentadiene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	900.74
2,4,6-Trichlorophenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	84.84
2,4,5-Trichlorophenol	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	85.56
2-Chloronaphthalene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	417.23
2-Nitroaniline	<6950	<7380	<4780	<5440	<6100	<9030	NA	NA	0.222
Dimethylphthalate	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	24.95
Acenaphthylene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	5.87
2,6-Dinitrotoluene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	20.62
3-Nitroaniline	<6950	<7380	<4780	<5440	<6100	<9030	NA	NA	0.222
Acenaphthene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	6.71
2,4-Dinitrophenol	<6950	<7380	<4780	<5440	<6100	<9030	NA	NA	1.33
4-Nitrophenol	<6950	<7380	<4780	<5440	<6100	<9030	NA	NA	7.78
Dibenzofuran	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	1520
2,4-Dinitrotoluene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	75.13
Diethylphthalate	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	8.04
4-Chlorophenyl-phenyl ether	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	656.12
Fluorene	<1740	<1850	<1190	<1360	<1530	<2260	NA	77.4	21.2
4-Nitroaniline	<6950	<7380	<4780	<5440	<6100	<9030	NA	NA	0.222
4,6-Dinitro-2-methylphenol	<6950	<7380	<4780	<5440	<6100	<9030	NA	NA	10.38
N-Nitrosodiphenylamine	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	155.24
4-Bromophenyl-phenylether	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	1.55
Hexachlorobenzene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	20
Pentachlorophenol	<6950	<7380	<4780	<5440	<6100	<9030	NA	NA	30100

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Yellow	Yellow			
	River	River	River	River	Creek	Creek	Scre	ening Benchma	arks
River Mile	17.0	16.5	16.1	16.1	0.4	0.1	Sediment	MacDonald	
Date Sampled	9/26/2006	9/26/2006	9/26/2006	9/26/2006	9/25/2006	9/25/2006	Reference	2000	USEPA
Time Sampled	3:00 PM	2:20 PM	1:20 PM	1:20 PM	6:35 PM	3:45 PM	Values (SRV)	TEC	EDQLs
Semi-volatile Organic Analytes (ug	J/kg)			Duplicate					
Phenanthrene	4690	4010	2350J	3500	2850J	<2260	NA	204	41.9
Anthracene	<1740	<1850	<1190	<1360	<1530	<2260	NA	57.2	46.9
Di-N-butylphthalate	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	110.5
Fluoranthene	9370	9210	3140	5390	5670	4840	NA	423	111.3
Pyrene	5620	5320	1210J	2990	3550	<2260	NA	195	53
Butylbenzylphthalate	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	4190
3,3'-Dichlorobenzidine	<3470	<3690	<2390	<2720	<3050	<4510	NA	NA	28.22
Benzo(a)anthracene	3980	4010	1330J	2630J	1910J	<2260	NA	108	31.7
Chrysene	4200	4080	1670J	2840	2360J	<2260	NA	166	57.1
bis(2-Ethylhexyl) phthalate	<1740	<1850	<1190	4260	<1530	<2260	NA	NA	182
Di-n-octylphthalate	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	40,600
Benzo(b)fluoranthene	3810	3620J	1200J	2390J	2060J	<2260	NA	NA	10,400
Benzo(k)fluoranthene	3330J	3310J	<1190	2260J	2200J	<2260	NA	NA	240
Benzo(a)pyrene	3850	3820	1260J	2550J	1800J	<2260	NA	150	31.9
Indeno(1,2,3-cd)pyrene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	200
Dibenzo(a,h)anthracene	<1740	<1850	<1190	<1360	<1530	<2260	NA	33	6.22
Benzo(g,h,i)perylene	<1740	<1850	<1190	<1360	<1530	<2260	NA	NA	170
PCBs (ug/kg)									
Aroclor 1016	<15.1	<86.5	<107	<128	<13.3	<20	NA	59.8a	34.1a
Aroclor 1221	<15.1	<86.5	<107	<128	<13.3	<20	NA	59.8a	34.1a
Aroclor 1232	<15.1	<86.5	<107	<128	<13.3	<20	NA	59.8a	34.1a
Aroclor 1242	<15.1	<86.5	<107	<128	<13.3	<20	NA	59.8a	34.1a
Aroclor 1248	<15.1	<86.5	<107	<128	<13.3	<20	NA	59.8a	34.1a
Aroclor 1254	<15.1	<86.5	<107	<128	<13.3	<20	NA	59.8a	34.1a
Aroclor 1260	<15.1	683	793	821	<13.3	91.5	NA	59.8a	34.1a
Other									
Diesel Range Organics (mg/kg)	830	1,380	2,500	3,220	128J	135J	NA	NA	NA
Gasoline Range Organics (mg/kg)	<83.9	0.105J	1.09	0.621	<0.0778	<0.116	NA	NA	NA
Cyanide (mg/kg)	2.33	2.16	4.58	7.53	NA	NA	NA	NA	NA
Percent Solids	55.3	50.5	39.9	35.6	63.1	42.9	NA	NA	NA

J - The analyte was positively identified, but the quantitation was below the reporting limit (RL).

E - Estimated concentration due to sample matrix interference.

< - Not detected at or above the method detection limit (MDL value reported with the less than symbol).

a - Guideline is based on total PCBs.

Appendix Table 4. Index of Biotic Integrity and Modified Index of Well-being metrics and scores for fish sampling sites in the Mahoning River and Yellow Creek, 2006.

						Number	of		Percent of Individuals						Rel.No.		
River Mile	Туре	Date	Drainage area (sq mi)	Total species	Sunfish species	Sucker species	Intolerant species	Darter species	Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(0.3km)	IBI	Modified Iwb
Yellow	Creel	k - (18007	7)														
Year:	2006)															
0.40	Е	08/15/200	6 39	14(3)	3(3)	2(3)	0(1)	2(1)	57(5)	14(5)	8(5)	2.0(3)	61(5)	0.0(5)	1516(5)	44	8.4
0.40	Е	09/25/200	6 39	14(3)	3(3)	1(1)	0(1)	2(1)	46(5)	16(5)	11(5)	1.1(3)	62(5)	0.0(5)	1334(5)	42	8.8
0.10	Е	08/15/200	6 39	18(3)	3(3)	2(3)	1(1)	4(3)	54(5)	19(5)	5(5)	6.3(5)	66(5)	0.0(5)	503(3)	46	8.0
0.10	E	09/25/200	6 39	15(3)	2(3)	2(3)	1(1)	3(3)	58(5)	17(5)	3(5)	3.4(3)	78(5)	0.8(3)	299(3)	42	7.5

na - Qualitative data, Modified Iwb not applicable.

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

^{• -} One or more species excluded from IBI calculation.

Appendix Table 4. Index of Biotic Integrity and Modified Index of Well-being metrics and scores for fish sampling sites in the Mahoning River and Yellow Creek, 2006.

					Numl	ber of		Percent of Individuals							Rel.No. minus		
River Mile	Туре	Date	Drainage area (sq mi)	Total species	Sunfish species	Sucker species	Intolerant species	Rnd-bodiec suckers	I Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified Iwb
Mahoni	ng Riv	er - (18-00)1)														
Year:	2006																
17.00	А	08/16/2006	5 1018	12(3)	4(5)	1(1)	0(1)	0(1)	2(1)	22(3)	12(5)	5(3)	79(5)	3.3(1)	142(1) *	30	6.0
17.00	А	09/26/2006	5 1018	9(1)	3(3)	0(1)	0(1)	0(1)	0(1)	31(1)	33(1)	6(3)	54(5)	13.6(1)	100(1) *	20	6.0
16.50	А	08/16/2006	5 1020	10(3)	4(5)	1(1)	0(1)	0(1)	1(1)	52(1)	43(1)	4(1)	50(3)	0.8(3)	120(1)	22	6.6
16.50	А	09/26/2006	5 1020	11(3)	4(5)	0(1)	0(1)	0(1)	0(1)	26(3)	15(5)	4(1)	70(5)	7.4(1)	80(1) *	28	6.2
16.10	А	08/16/2006	5 1022	12(3)	5(5)	0(1)	0(1)	0(1)	2(1)	28(1)	13(5)	11(5)	67(5)	9.3(1)	78(1) *	30	5.6
16.10	А	09/26/2006	5 1022	9(1)	3(3)	0(1)	0(1)	0(1)	0(1)	29(1)	32(1)	5(3)	53(3)	13.2(1)	54(1) *	18	6.2

River Code: 18 001	Stream	n •	Maha	ning D	vor			Sample	Date: 7	006
Diver Miles 17.00	Jacob	11 		ning K ST Com	1 V CI	a alaa		Sample		000
River Mile: 17.00	Locat	1011:	aaj. r		ipben w	Orks		Date Ra	nge: 08	/16/2006
Time Fished: 3759 sec	Drain	age:	1018.0) sq mi				Т	'hru: 09	/26/2006
Dist Fished: 1.00 km	Basin	: Ma	honin	g River		No of Pa	asses: 2	Sampler	Type: A	1
Species	IBI	Feed	Bree	d	# of	Relative	% by	Relative	% by	Ave(gm)
Name / ODNR status	Grp	Guild	Guild	Tol	Fish	Number	Number	Weight	Weight	Weight
Gizzard Shad		0	М		3	3.00	1.84	0.44	0.70	147.67
White Sucker	W	0	S	т	1	1.00	0.61	0.32	0.51	322.00
Common Carp	G	0	Μ	т	18	18.00	11.04	52.15	82.73	2,896.97
Goldfish	G	0	Μ	т	1	1.00	0.61	0.50	0.79	495.00
Spotfin Shiner	Ν	I	Μ		22	22.00	13.50	0.11	0.17	4.95
Fathead Minnow	Ν	0	С	т	1	1.00	0.61	0.00	0.00	2.00
Bluntnose Minnow	Ν	0	С	т	10	10.00	6.13	0.07	0.10	6.50
Common Carp X Goldfish	G	0		Т	1	1.00	0.61	1.25	1.98	1,250.00
Channel Catfish	F		С		2	2.00	1.23	3.25	5.16	1,625.00
Yellow Bullhead		Ι	С	Т	1	1.00	0.61	0.20	0.31	196.00
White Crappie	S	Ι	С		4	4.00	2.45	0.09	0.15	23.25
Largemouth Bass	F	С	С		8	8.00	4.91	0.11	0.17	13.50
Green Sunfish	S	I	С	Т	9	9.00	5.52	0.23	0.36	25.33
Bluegill Sunfish	S	I	С	Р	10	10.00	6.13	0.14	0.22	14.00
Pumpkinseed Sunfish	S	I	С	Р	65	65.00	39.88	3.49	5.53	53.62
Walleye	F	Ρ	S		1	1.00	0.61	0.55	0.87	550.00
Yellow Perch			Μ		6	6.00	3.68	0.15	0.23	24.50
	Mile T	otal			163	163.00		63.03		
	Numb	er of	Specie	∋s	16					
	Numb	er of	Hybria	ls	1					

					11		2			8
River Code: 18-001	Strea	im:	Maho	ning R	iver			Sample	Date: 2	2006
River Mile: 16.50	Loca	tion:		、 .				Date Ra	nge: 08	/16/2006
Time Fished: 3940 sec	Draii	nage:	1020.0) sq mi				1	hru: 09	/26/2006
Dist Fished: 1.00 km	Basiı	n: Ma	honin	g River		No of Pa	asses: 2	Sampler	Type: A	A
Species	IBI	Feed	Bree	d	# of	Relative	% by	Relative	% by	Ave(gm)
Name / ODNR status	Grp	Guild	Guild	Tol	Fish	Number	Number	Weight	Weight	Weight
Gizzard Shad		0	М		1	1.00	0.56	0.27	0.86	268.00
White Sucker	W	0	S	Т	1	1.00	0.56	0.22	0.70	217.00
Common Carp	G	0	Μ	Т	7	7.00	3.93	18.85	60.69	2,692.86
Goldfish	G	0	Μ	Т	2	2.00	1.12	0.45	1.44	224.00
Spotfin Shiner	Ν	Ι	Μ		7	7.00	3.93	0.03	0.10	4.29
Bluntnose Minnow	Ν	0	С	Т	49	49.00	27.53	0.11	0.35	2.24
Common Carp X Goldfish	G	0		Т	1	1.00	0.56	1.25	4.02	1,250.00
Channel Catfish	F		С		2	2.00	1.12	3.00	9.66	1,500.00
Yellow Bullhead		I	С	Т	1	1.00	0.56	0.25	0.79	246.00
White Bass	F	Р	Μ		3	3.00	1.69	0.61	1.97	203.50
White Crappie	S	I	С		5	5.00	2.81	0.57	1.83	113.80
Largemouth Bass	F	С	С		3	3.00	1.69	0.07	0.23	23.67
Green Sunfish	S	I	С	Т	17	17.00	9.55	0.54	1.75	31.94
Bluegill Sunfish	S	I	С	Р	6	6.00	3.37	0.15	0.50	25.67
Pumpkinseed Sunfish	S	I	С	Р	64	64.00	35.96	3.38	10.88	52.79
Yellow Perch			Μ		8	8.00	4.49	0.19	0.60	23.38
Sauger X Walleye	Е	Р			1	1.00	0.56	1.13	3.62	1,125.00
	Mile	Total			178	178.00		31.06		
	Numl	ber of	Specie	es	15					
	Numl	ber of	Hybria	ls	2					

River Code: 18-001	Strea	m:	Maho	ning Ri	ver			Sample	Date: 2	006
River Mile: 16.10	Loca	tion:						Date Ra	nge 08	/16/2006
Time Fished: 3376 sec	Drain	nage:	1022.0) sq mi				T	hru: 09	/26/2006
Dist Fished: 1.00 km	Basir	^{1:} Ma	honing	g River		No of Pa	asses: 2	Sampler	Type: A	A
Species	IBI Grn	Feed	Bree	d Tal	# of Fish	Relative	% by	Relative Weight	% by Weight	Ave(gm)
	Gip	Guilu	Guilu	101	F1511			weight	weight	weight
Gizzard Shad		0	Μ		5	5.00	5.43	0.16	0.31	32.40
Common Carp	G	0	М	Т	12	12.00	13.04	41.00	79.26	3,416.67
Spotfin Shiner	Ν	I	Μ		6	6.00	6.52	0.04	0.09	7.33
Bluntnose Minnow	Ν	0	С	Т	2	2.00	2.17	0.01	0.02	5.50
Channel Catfish	F		С		3	3.00	3.26	6.23	12.03	2,075.00
Yellow Bullhead		I	С	Т	3	3.00	3.26	0.96	1.86	320.33
White Bass	F	Ρ	Μ		1	1.00	1.09	0.34	0.66	339.00
White Crappie	S	I	С		2	2.00	2.17	0.09	0.16	42.50
Rock Bass	S	С	С		2	2.00	2.17	0.07	0.14	37.00
Largemouth Bass	F	С	С		3	3.00	3.26	0.40	0.77	132.67
Green Sunfish	S	I	С	Т	9	9.00	9.78	0.33	0.64	37.00
Bluegill Sunfish	S	I	С	Р	12	12.00	13.04	0.20	0.39	16.83
Pumpkinseed Sunfish	S	Ι	С	Р	24	24.00	26.09	1.08	2.09	45.00
Walleye	F	Ρ	S		1	1.00	1.09	0.34	0.66	340.00
Yellow Perch			Μ		6	6.00	6.52	0.05	0.10	8.33
Sauger X Walleye	Е	Ρ			1	1.00	1.09	0.43	0.82	425.00
	Mile	Total			92	92.00		51.73		
	Numl	ber of	Specie	es	15					
	Numl	ber of	Hybrid	s	1					

					••		•			U
River Code: 18-007	Strea	ım:	Yellov	v Cre	ek			Sample	Date: 2	006
River Mile: 0.40	Loca	tion:						Date Ra	nge: 08/	15/2006
Time Fished: 4320 sec	Drain	nage:	39.3 s	q mi				Т	'hru: 09/	25/2006
Dist Fished: 0.34 km	Basii	n: Ma	honin	g Rive	er	No of Pa	asses: 2	Sampler	r Type: E	
Species	IBI	Feed	Bree	d	# of	Relative	% by	Relative	% by	Ave(gm)
Name / ODNR status	Grp	Guild	Guild	Tol	Fish	Number	Number	Weight	Weight	Weight
Northern Hog Sucker	R	I	S	М	2	1.76	0.11	0.08	0.63	48.00
White Sucker	W	0	S	Т	42	37.06	2.21	1.48	11.07	40.04
Common Carp	G	0	М	Т	2	1.76	0.11	0.11	0.80	60.50
Blacknose Dace	Ν	G	S	Т	31	27.35	1.63	0.12	0.86	4.22
Creek Chub	Ν	G	Ν	Т	6	5.29	0.32	0.03	0.23	5.83
Spotfin Shiner	Ν	Ι	Μ		23	20.29	1.21	0.09	0.67	4.43
Fathead Minnow	Ν	0	С	Т	4	3.53	0.21	0.01	0.07	2.50
Bluntnose Minnow	Ν	0	С	Т	136	120.00	7.16	0.43	3.21	3.59
Central Stoneroller	Ν	н	Ν		485	427.94	25.54	4.72	35.22	11.03
Yellow Bullhead		Ι	С	Т	25	22.06	1.32	0.71	5.28	32.11
Eastern Banded Killifish	Е	Ι	Μ	Т	3	2.65	0.16	0.02	0.12	6.00
Largemouth Bass	F	С	С		30	26.47	1.58	0.21	1.53	7.75
Green Sunfish	S	Ι	С	Т	35	30.88	1.84	0.69	5.12	22.22
Bluegill Sunfish	S	Ι	С	Ρ	153	135.00	8.06	2.28	16.99	16.88
Pumpkinseed Sunfish	S	Ι	С	Ρ	8	7.06	0.42	0.35	2.58	49.00
Green Sf X Pumpkinseed					1	0.88	0.05	0.03	0.21	32.00
Greenside Darter	D	Ι	S	Μ	492	434.12	25.91	1.49	11.12	3.43
Rainbow Darter	D	I	S	М	421	371.47	22.17	0.58	4.29	1.55
	Mile	Total			1,899	1,675.59		13.41		
	Numl	ber of	Specie	s	17					
	Num	ber of	Hybria	s	1					

										U
River Code: 18-007	Stream	n:	Yellov	v Cree	k			Sample	Date: 2	006
River Mile: 0.10	Locat	ion:	near m	outh				Date Ra	nge: 08/	/15/2006
Time Fished: 5700 sec	Drain	age:	39.4 so	q mi				Т	'hru: 09	/25/2006
Dist Fished: 0.40 km	Basin	: Ma	honing	g Rive	r	No of Pa	asses: 2	Sampler	Type: E	3
Species	IBI	Feed	Bree	d Tal	# of	Relative	% by	Relative	% by	Ave(gm)
	Gip	Guila	Guila	101				weight	weight	weight
Northern Hog Sucker	R	I	S	Μ	5	3.75	0.77	0.12	2.13	30.60
White Sucker	W	0	S	Т	15	11.25	2.30	0.41	7.63	36.67
Blacknose Dace	N	G	S	Т	16	12.00	2.45	0.04	0.71	3.19
Creek Chub	Ν	G	Ν	Т	4	3.00	0.61	0.05	0.90	16.00
Spotfin Shiner	Ν	I	М		8	6.00	1.23	0.03	0.46	4.13
Fathead Minnow	Ν	0	С	Т	1	0.75	0.15	0.00	0.03	2.00
Bluntnose Minnow	Ν	0	С	Т	14	10.50	2.14	0.05	0.93	4.79
Central Stoneroller	Ν	н	Ν		106	79.50	16.23	0.86	15.94	10.84
Channel Catfish	F		С		1	0.75	0.15	0.90	16.66	1,200.00
Yellow Bullhead		Ι	С	Т	39	29.25	5.97	1.03	19.08	35.24
Largemouth Bass	F	С	С		34	25.50	5.21	0.15	2.70	5.71
Green Sunfish	S	I	С	Т	30	22.50	4.59	0.64	11.77	28.27
Bluegill Sunfish	S	Ι	С	Р	49	36.75	7.50	0.35	6.40	9.41
Pumpkinseed Sunfish	S	Ι	С	Р	1	0.75	0.15	0.01	0.17	12.00
Green Sf X Bluegill Sf					1	0.75	0.15	0.03	0.56	40.00
Yellow Perch			М		1	0.75	0.15	0.00	0.06	4.00
Greenside Darter	D	Ι	S	М	155	116.25	23.74	0.46	8.42	3.92
Banded Darter	D	Ι	S	Ι	9	6.75	1.38	0.01	0.24	1.89
Rainbow Darter	D	Ι	S	М	162	121.50	24.81	0.28	5.19	2.31
Fantail Darter	D	Т	С		2	1.50	0.31	0.00	0.06	2.00
	Mile T	otal			653	489.75		5.40		
	Numb	er of	Specie	s	19					
	Numb	er of	Hvbrid	s	1					
		21 01		-	•					

						-							
	Drainage		Νι	umber of				Percent:					
River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms	Qual. EPT	Eco- region	ICI
Mahoning	River (18-0	001)											
Year: 200	6												
17.00	1018	37(6)	2(0)	2(2)	24(6)	32.8(6)	0.3(0)	1.8(2)	64.6(0)	19.1(0)	2(0)	3	22
16.50	1020	38(6)	4(2)	2(2)	22(6)	28.8(6)	1.9(0)	0.0(0)	69.0(0)	16.9(0)	3(0)	3	22
16.10	1022	29(4)	3(2)	2(2)	17(6)	4.6(2)	6.0(2)	3.4(2)	86.0(0)	37.6(0)	7(2)	3	22
Yellow Cre	ek (18-007)											
Year: 200	6												
0.40	39.3	35(4)	4(2)	5(6)	18(4)	3.3(2)	17.8(6)	16.1(4)	62.4(2)	4.2(6)	6(2)	3	38
0.10	39.4	28(4)	5(2)	3(4)	12(2)	1.2(2)	5.5(4)	25.0(4)	67.7(0)	12.6(4)	7(2)	3	28

Appendix Table 6. Invertebrate Community Index (ICI) metrics and scores for sites sampled in theMahoning River and Yellow Creek, 2006.Page A21

Appendix Table 7. Ohio EPA macroinvertebrate results from the Mahoning River and Yellow Creek, 2006.

96900 Ferrissia sp

Taxa	Tore	Onent/O	101	Taxa	Toyo	Onent/Onel
Code	laxa	Quant/Qu		Code	Taxa	Quant/Quar
01320	Hydra sp	45				
01801	Turbellaria	1 +	+	No. Qu	antitative Taxa: 37	Total Taxa: 40
03600	Oligochaeta	143		No. Qu	alitative Taxa: 14	ICI: 22
04615	Actinobdella inequiannulata	1		Number	r of Organisms: 11/3	Qual FPT 2
06810	Gammarus fasciatus	82 +	+	Tumber	1 01 01gamininis. 1143	Qual El 1. 2
08601	Hydrachnidia	4				
13400	Stenacron sp	356 -	+			
16700	Tricorythodes sp	19 -	+			
22001	Coenagrionidae	-	+			
22300	Argia sp	7 -	+			
51206	Cyrnellus fraternus	1				
52200	Cheumatopsyche sp	2				
77115	Ablabesmyia janta	23				
77500	Conchapelopia sp	57 -	+			
77750	Hayesomyia senata or Thienemannimyia norena	57				
80370	Corynoneura lobata	4				
80410	Cricotopus (C.) sp	8 -	+			
80420	Cricotopus (C.) bicinctus	4 -	+			
81631	Parakiefferiella n.sp 1	11				
81650	Parametriocnemus sp	4				
81825	Rheocricotopus (Psilocricotopus) robacki	65 -	+			
82070	Synorthocladius semivirens	11				
82820	Cryptochironomus sp	-	+			
83002	Dicrotendipes modestus	23				
83040	Dicrotendipes neomodestus	42				
83050	Dicrotendipes lucifer	4				
83300	Glyptotendipes (G.) sp	8				
84450	Polypedilum (Uresipedilum) flavum	4				
84470	Polypedilum (P.) illinoense	4 -	+			
84540	Polypedilum (Tripodura) scalaenum group	15				
84700	Stenochironomus sp	8 -	+			
84790	Tribelos fuscicorne	8				
85500	Paratanytarsus sp	4				
85625	Rheotanytarsus sp	4				
85800	Tanytarsus sp	4				
85821	Tanytarsus glabrescens group sp 7	8				
87540	Hemerodromia sp	25				
93200	Hydrobiidae	10				
96264	Planorbella (Pierosoma) pilsbryi	4	+			
96900	Ferrissia sp	67				

00/26/2006 D 0-11 $\overline{}$. 10 001 DNI. 17.00 **c**:

Taxa				Taxa			
Code	Taxa	Quant/Q	ual	Code	Taxa	Qua	ant/Qual
01220	Hudra an	21					
01320	nyara sp Turbellaria	5	+	No. Oue	ntitativa Tavas 29	Total Taxas	40
03600	Oligochaeta	101	+	NO. Qua			42
03000	Mooreobdella sp	1	+	No. Qua	litative Taxa: 18	ICI:	22
05800	Caecidatea sp	-	+	Number	of Organisms: 943	Qual EPT:	3
06810	Gammarus fasciatus	150	+				
08230	Orconactas (Crokarinus) obscurus	100	+				
08601	Hydrachnidia	2	•				
11120	Raotis flavistriaa	- 1					
11130	Baetis intercalaris	- 2					
13400	Stenacron sn	258	+				
16700	Tricorythodas sn	11	_				
22300	Argia sp		+				
52200	Chaumatonswcha sp	16	+				
53800	Hydrontila sn	2	•				
68130	Holichus sp	1					
68901	Macronychus glabratus	-	+				
69400	Stenelmis sn	1	•				
77100	Ahlahesmvia sp	2					
77500	Conchanglonia sp	23					
77750	Havesonvia senata or Thienemannimvia	35					
11130	norena	50					
78350	Meropelopia sp	2					
80370	Corvnoneura lobata	2					
80410	Cricotopus (C.) sp	12	+				
80420	Cricotopus (C.) bicinctus	2					
80430	Cricotopus (C.) tremulus group	6	+				
80470	Cricotopus (C.) or Orthocladius (O.) sp	2					
81240	Nanocladius (N.) distinctus	2					
81631	Parakiefferiella n.sp 1	2					
81825	Rheocricotopus (Psilocricotopus) robacki	56	+				
82070	Synorthocladius semivirens	12					
83002	Dicrotendipes modestus	2					
83040	Dicrotendipes neomodestus	10					
84450	Polypedilum (Uresipedilum) flavum	8					
84460	Polypedilum (P.) fallax group	2					
84470	Polypedilum (P.) illinoense	14	+				
84540	Polypedilum (Tripodura) scalaenum group	10	+				
84700	Stenochironomus sp	4					
84790	Tribelos fuscicorne	2	+				
87540	Hemerodromia sp	16					
93200	Hydrobiidae	107	+				
96900	Ferrissia sp	38					

Collection Date:	09/26/2006	River Code: 18-001	RM · 1610	Site: Mahoning River
Concention Date.	09/20/2000	KIVEI COUE. 10-001	\mathbf{K}	Site. Manufing Kiver

		10 001 100	-	~		
Taxa	T	01	Taxa	Torro	Ou	ont/Outol
Code	Taxa	Quant/Qual	Code	Таха	Qu	
00401	Spongillidae	+				
01320	Hydra sp	8	No. Qu	antitative Taxa: 29	Total Taxa:	40
01801	Turbellaria	4 +	No. Qu	alitative Taxa: 27	ICI:	22
03600	Oligochaeta	178	Numbe	er of Organisms: 1105	Qual EPT.	7
04615	Actinobdella inequiannulata	+	Tunioe	i of organishis. 1105	Qual El 1.	/
04960	Mooreobdella sp	+				
05800	Caecidotea sp	3 +				
06810	Gammarus fasciatus	38 +				
08200	Orconectes sp	+				
08601	Hydrachnidia	4 +				
11120	Baetis flavistriga	+				
11130	Baetis intercalaris	1 +				
13400	Stenacron sp	36 +				
16700	Tricorythodes sp	14 +				
49101	Sisyridae	+				
52200	Cheumatopsyche sp	65 +				
52560	Hydropsyche orris	1 +				
52580	Hydropsyche valanis	+				
77750	Hayesomyia senata or Thienemannimyia norena	15				
78350	Meropelopia sp	23				
80310	Cardiocladius obscurus	+				
80410	Cricotopus (C.) sp	152 +				
80420	Cricotopus (C.) bicinctus	61 +				
80430	Cricotopus (C.) tremulus group	61				
80440	Cricotopus (C.) trifascia	+				
80740	Eukiefferiella claripennis group	8				
81240	Nanocladius (N.) distinctus	23				
81650	Parametriocnemus sp	8				
81825	Rheocricotopus (Psilocricotopus) robacki	122 +				
82070	Synorthocladius semivirens	30 +				
83002	Dicrotendipes modestus	15				
83040	Dicrotendipes neomodestus	+				
84450	Polypedilum (Uresipedilum) flavum	23 +				
84470	Polypedilum (P.) illinoense	38 +				
84700	Stenochironomus sp	8				
85625	Rheotanytarsus sp	30				
85821	Tanytarsus glabrescens group sp 7	8				
87540	Hemerodromia sp	12				
93200	Hydrobiidae	+				
96900	Ferrissia sp	116 +				

Collection Date:	09/25/2006	River Code: 18-007	RM: 0	.40 Site: Yellow Creek	
Concention Dute.	07/23/2000		11111. 0	. IO Dite. Tenow creek	

Taxa				Taxa		
Code	Taxa	Quant/Q	Qual	Code	Taxa	Quant/Qual
01200	Cordylophora lacustris	4		85800	Tanytarsus sp	8
01320	Hydra sp	52		85821	Tanytarsus glabrescens group sp 7	7 31
01801	Turbellaria	115	+	87540	Hemerodromia sp	518
01900	Nemertea	80		96900	Ferrissia sp	14
03360	Plumatella sp		+			
03600	Oligochaeta	72	+	No. C	Duantitative Taxa: 35	Total Taxa: 47
06700	Crangonyx sp		+	No C	Jualitative Taxa: 22	ICI: 38
08230	Orconectes (Crokerinus) obscurus		+	Numl	an of Organisma, 2050	Oreal EDT: (
08601	Hydrachnidia	20		Num	ber of Organisms: 2059	Qual EP1: 6
11120	Baetis flavistriga	12	+			
11130	Baetis intercalaris	33	+			
13400	Stenacron sp		+			
13521	Stenonema femoratum	1				
17200	Caenis sp	21	+			
22001	Coenagrionidae		+			
22300	Argia sp		+			
52200	Cheumatopsyche sp	286	+			
52430	Ceratopsyche morosa group	1				
52530	Hydropsyche depravata group	43	+			
52540	Hydropsyche dicantha	33				
53800	Hydroptila sp	4				
68025	Ectopria sp		+			
68901	Macronychus glabratus	9				
74100	Simulium sp	17	+			
77500	Conchapelopia sp	69				
77750	Hayesomyia senata or Thienemannimyia norena	30				
78655	Procladius (Holotanypus) sp		+			
80310	Cardiocladius obscurus	8	+			
80351	Corynoneura n.sp 1	4				
80370	Corynoneura lobata	32				
80440	Cricotopus (C.) trifascia	8				
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	8				
81825	Rheocricotopus (Psilocricotopus) robacki	184				
82070	Synorthocladius semivirens	8				
82101	Thienemanniella taurocapita	4				
82820	Cryptochironomus sp		+			
83300	Glyptotendipes (G.) sp	8				
83840	Microtendipes pedellus group	15				
84210	Paratendipes albimanus or P. duplicatus		+			
84450	Polypedilum (Uresipedilum) flavum	15	+			
84540	Polypedilum (Tripodura) scalaenum group		+			
84750	Stictochironomus sp		+			
85625	Rheotanytarsus sp	292				

Collection Date: 09/25/2006 River Code: 18-007 RM: 0.10 Site: Yellow Creek near mouth

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qual
01200	Cordylophora lacustris	4			
01320	Hydra sp	8			
01801	Turbellaria	125 +			
01900	Nemertea	31			
03600	Oligochaeta	151 +			
05800	Caecidotea sp	+			
06700	Crangonyx sp	+			
08230	Orconectes (Crokerinus) obscurus	+			
08601	Hydrachnidia	20			
11120	Baetis flavistriga	1			
11130	Baetis intercalaris	9 +			
13400	Stenacron sp	1 +			
13521	Stenonema femoratum	1 +			
17200	Caenis sp	3 +			
21200	Calopteryx sp	+			
22001	Coenagrionidae	+			
22300	Argia sp	+			
23909	Boyeria vinosa	+			
52200	Cheumatopsyche sp	64 +			
52530	Hydropsyche depravata group	1 +			
52540	Hydropsyche dicantha	1 +			
68075	Psephenus herricki	+			
69400	Stenelmis sp	7 +			
74100	Simulium sp	19 +			
77500	Conchapelopia sp	30			
77750	Hayesomyia senata or Thienemannimyia norena	7			
78655	Procladius (Holotanypus) sp	+			
80310	Cardiocladius obscurus	7 +			
80410	Cricotopus (C.) sp	37 +			
80420	Cricotopus (C.) bicinctus	+			
80430	Cricotopus (C.) tremulus group	7			
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	7			
81825	Rheocricotopus (Psilocricotopus) robacki	207			
84450	Polypedilum (Uresipedilum) flavum	7			
85625	Rheotanytarsus sp	273 +			
85821	Tanytarsus glabrescens group sp 7	30			
87540	Hemerodromia sp	152			
96900	Ferrissia sp	1			
No. Q No. Q Numb	Quantitative Taxa: 28Total 7Qualitative Taxa: 2424Deer of Organisms: 1211Qualitative Taxa	Гаха: 38 ICI: 28 FPT: 7			