Total Maximum Daily Loads for Selected Streams in the Youghiogheny River Watershed, West Virginia

Prepared for:
West Virginia Department of Environmental Protection
Division of Water and Waste Management
Watershed Assessment Branch, TMDL Section

Prepared by:
Water Resources and TMDL Center
Tetra Tech
405 Capitol Street, Suite 608
Charleston, WV 25301
Total Maximum Daily Loads for Selected Streams in the Youghiogheny River Watershed, West Virginia

FINAL APPROVED REPORT

August 2009
CONTENTS

Acronyms, Abbreviations, and Definitions... v

Executive Summary ... viii

1.0 Report Format .. 1

2.0 Introduction .. 1
 2.1 Total Maximum Daily Loads ... 1
 2.2 Water Quality Standards .. 3

3.0 Watershed Description and Data Inventory .. 4
 3.1 Watershed Description... 4
 3.2 Data Inventory ... 6
 3.3 Impaired Waterbodies .. 8

4.0 Biological Impairment and Stressor Identification ... 11
 4.1 Introduction.. 11
 4.2 Data Review ... 11
 4.3 Candidate Causes/Pathways ... 12
 4.4 Stressor Identification Results ... 14

5.0 Metals Source Assessment ... 17
 5.1 Metals Point Sources .. 17
 5.1.1 Mining Point Sources .. 19
 5.1.2 Non-mining Point Sources ... 19
 5.1.3 Construction Stormwater Permits ... 19
 5.2 Metals Nonpoint Sources ... 20
 5.2.1 Abandoned Mine Lands and Bond Forfeiture Sites .. 20
 5.2.2 Sediment Sources ... 20

6.0 pH Sources .. 22
 6.1 Acid Deposition .. 22
 6.2 pH – Natural Influences .. 23
Youghiogheny River Watershed: TMDL Report

7.0 Fecal Coliform Source Assessment
- 7.1 Fecal Coliform Point Sources
 - 7.1.1 Individual NPDES Permits
 - 7.1.2 General Sewage Permits
- 7.2 Fecal Coliform Nonpoint Sources
 - 7.2.1 On-site Treatment Systems
 - 7.2.2 Urban/Residential Runoff
 - 7.2.3 Agriculture
 - 7.2.4 Natural Background (Wildlife)

8.0 Sediment Source Assessment

9.0 Modeling Process
- 9.1 Model Selection
- 9.2 Model Setup
 - 9.2.1 General MDAS Configuration
 - 9.2.2 Iron and Sediment Configuration
 - 9.2.3 Aluminum and pH Configuration
 - 9.2.4 Fecal Coliform Configuration
- 9.3 Hydrology Calibration
- 9.4 Water Quality Calibration
- 9.5 Modeling Technique for Biological Impairment with Sedimentation Stressor
- 9.6 Allocation Analysis
 - 9.6.1 TMDL Endpoints
 - 9.6.2 Baseline Conditions and Source Loading Alternatives
- 9.7 TMDLs and Source Allocations
 - 9.7.1 Total Iron TMDLs
 - 9.7.2 Dissolved Aluminum and pH TMDLs
 - 9.7.3 Fecal Coliform Bacteria TMDLs
 - 9.7.4 Seasonal Variation
 - 9.7.5 Critical Conditions
 - 9.7.6 TMDL Presentation

10.0 TMDL Results

11.0 Future Growth
- 11.1 Iron and Aluminum
- 11.2 Fecal Coliform Bacteria

12.0 Public Participation
- 12.1 Public Meetings
12.2 Public Notice and Public Comment Period ...53
12.3 Response Summary ...53

13.0 Reasonable Assurance ..58
13.1 NPDES Permitting...58
13.2 Watershed Management Framework Process ..58
13.3 Public Sewer Projects ...59
13.4 AML Projects ...59

14.0 Monitoring Plan ..60
14.1 NPDES Compliance ..60
14.2 Nonpoint Source Project Monitoring ...60
14.3 TMDL Effectiveness Monitoring ...60

15.0 References ..61

FIGURES

Figure I-1. Examples of a watershed, TMDL watershed, and subwatersheds.............. vii
Figure 3-1. Location of the Youghiogheny River watershed in West Virginia 5
Figure 3-2. 4 Youghiogheny River TMDL watersheds ... 9
Figure 4-1. Conceptual model of candidate causes and potential biological effects 13
Figure 4-2. Location of the sediment reference stream, Little Laurel Run (WV-MY-169-A-3). 16
Figure 5-1. Metals sources in the Youghiogheny River watershed 18
Figure 7-1. Failing septic flows in the Youghiogheny River watershed 26
Figure 9-1. 4 TMDL watersheds and subwatershed delineation 30
Figure 9-2. Conceptual stream channel components in the bank erosion model 32
Figure 9-3. Shrewsbury Hollow fecal coliform observed data 34
Figure 9-4. Annual precipitation totals for the Terra Alta, West Virginia weather station 38
Figure 9-5. Example of baseline and TMDL conditions for total iron 39
TABLES

Table 2-1. Applicable West Virginia water quality criteria .. 4
Table 3-1. Modified landuse for the Youghiogheny River TMDL watersheds 6
Table 3-2. Datasets used in TMDL development .. 7
Table 3-3. Waterbodies and impairments for which TMDLs have been developed 10
Table 4-1. Significant stressors of biologically impaired streams .. 15
Table 6-1. Causative sources of pH impaired streams ... 22
Table 9-1. Sediment loadings using different modeling approaches 35
Table 9-2. TMDL endpoints .. 36
Table 9-3. Iron TMDLs (Average Daily) Under Current Trout Water Criterion 43
Table 9-4. Iron TMDLs (Average Annual) Under Current Trout Water Criterion 43
Table 10-1. Dissolved Aluminum TMDLs .. 47
Table 10-2. Total Iron TMDLs .. 47
Table 10-3. pH TMDLs ... 48
Table 10-4. Fecal coliform bacteria TMDLs .. 49
Table 10-5. Biological TMDLs .. 50
ACRONYMS, ABBREVIATIONS, AND DEFINITIONS

7Q10 7-day, 10-year low flow
AD Acid Deposition
AMD acid mine drainage
AML abandoned mine land
AML&R [WVDEP] Office of Abandoned Mine Lands & Reclamation
BMP best management practice
BOD biochemical oxygen demand
BPH [West Virginia] Bureau for Public Health
CFR Code of Federal Regulations
CSO combined sewer overflow
CSR Code of State Rules
DEM Digital Elevation Model
DESC-R Dynamic Equilibrium Instream Chemical Reactions model
DMR [WVDEP] Division of Mining and Reclam ation
DNR West Virginia Division of Natural Resources
DO dissolved oxygen
DWWM [WVDEP] Division of Water and Waste Management
ERIS Environmental Resources Information System
GIS geographic information system
gpd gallons per day
GPS global positioning system
HAU home aeration unit
LA load allocation
µg/L micrograms per liter
MDAS Mining Data Analysis System
mg/L milligrams per liter
mL milliliter
MF membrane filter counts per test
MPN most probable number
MOS margin of safety
MRLC Multi-Resolution Land Characteristics Consortium
MS4 Municipal Separate Storm Sewer System
NED National Elevation Dataset
NLCD National Land Cover Dataset
NOAA-NCDC National Oceanic and Atmospheric Administration, National Climatic Data Center
NPDES National Pollutant Discharge Elimination System
NRCS Natural Resources Conservation Service
OOG [WVDEP] Office of Oil and Gas
POTW publicly owned treatment works
SI stressor identification
Watershed

A general term used to describe a drainage area within the boundary of a United States Geological Survey’s 8-digit hydrologic unit code. Throughout this report, the Youghiogheny River watershed refers to the tributary streams located in West Virginia that eventually drain to the Youghiogheny River (Figure I-1). The term “watershed” is also used more generally to refer to the land area that contributes precipitation runoff that eventually drains to the Youghiogheny River.

TMDL Watershed

This term is used to describe the total land area draining to an impaired stream for which a TMDL is being developed. This term also takes into account the land area drained by unimpaired tributaries of the impaired stream, and may include impaired tributaries for which additional TMDLs are presented. This report addresses 10 impaired streams contained within 4 TMDL watersheds in the Youghiogheny River watershed.

Subwatershed

The subwatershed delineation is the most detailed scale of the delineation that breaks each TMDL watershed into numerous catchments for modeling purposes. The 4 TMDL watersheds have been subdivided into 74 modeled subwatersheds. Pollutant sources, allocations and reductions are presented at the subwatershed scale to facilitate future permitting actions and TMDL implementation.
Figure I-1. Examples of a watershed, TMDL watershed, and subwatersheds
EXECUTIVE SUMMARY

This report includes Total Maximum Daily Loads (TMDLs) for 10 impaired streams in the Youghiogheny River watershed located in north central West Virginia.

A TMDL establishes the maximum allowable pollutant loading for a waterbody to comply with water quality standards, distributes the load among pollutant sources, and provides a basis for actions needed to restore water quality. West Virginia’s water quality standards are codified at Title 47 of the Code of State Rules (CSR), Series 2, and titled Legislative Rules, Department of Environmental Protection: Requirements Governing Water Quality Standards. The standards include designated uses of West Virginia waters and numeric and narrative criteria to protect those uses. The West Virginia Department of Environmental Protection routinely assesses use support by comparing observed water quality data with criteria and reports impaired waters every two years as required by Section 303(d) of the Clean Water Act (“303(d) list”). The Act requires that TMDLs be developed for listed impaired waters.

The majority of the subject impaired streams are included on West Virginia’s Draft 2008 Section 303(d) List. Documented impairments are related to numeric water quality criteria for total iron, dissolved aluminum, pH, and fecal coliform bacteria. Certain waters are also biologically impaired based on the narrative water quality criterion of 47 CSR 2–3.2.i, which prohibits the presence of wastes in state waters that cause or contribute to significant adverse impacts on the chemical, physical, hydrologic, and biological components of aquatic ecosystems.

Impaired waters were organized into 4 TMDL watersheds. For hydrologic modeling purposes, impaired and unimpaired streams in these 4 TMDL watersheds were further divided into 74 smaller subwatershed units for modeling. The subwatershed delineation provided a basis for georeferencing pertinent source information, monitoring data, and presentation of the TMDLs.
The Mining Data Analysis System (MDAS) was used to represent linkage between pollutant sources and instream responses for fecal coliform bacteria, total iron, aluminum, and pH. The MDAS is a comprehensive data management and modeling system that is capable of representing loads from nonpoint and point sources in the watershed and simulating instream processes.

The fecal coliform bacteria impairments in the watershed are primarily attributable to nonpoint sources. Failing on-site systems, direct discharges of untreated sewage, and precipitation runoff from agricultural areas are significant nonpoint sources of fecal coliform bacteria. Point sources of fecal coliform bacteria include the treated effluents of sewage treatment facilities. Such sources are not problematic, provided that compliance with existing NPDES permit requirements is maintained.

Iron impairments are also attributable to both point and nonpoint sources. Nonpoint sources of iron include abandoned mine lands (AML), roads, oil and gas operations, timbering, agriculture, urban/residential land disturbance and streambank erosion. Iron point sources include the stormwater contributions from construction sites and non-mining industrial facilities. The presence of individual source categories and their relative significance varies by subwatershed. Because iron is a naturally-occurring element that is present in soils, the iron loading from many of the identified sources is associated with sediment contributions.

Dissolved aluminum and pH impairments are related and attributable to two separate nonpoint source categories. In certain watersheds with low buffering capacity, acidic precipitation decreases pH below the pH criterion. Decreased pH may in turn increase the portion of aluminum in solution and result in exceedances of the dissolved aluminum criterion. The severity of the pH and aluminum impairments of Laurel Run is significantly magnified by the acid and aluminum loadings from AML sources.

Biological integrity/impairment is based on a rating of the stream’s benthic macroinvertebrate community using the multimetric West Virginia Stream Condition Index (WVSCI). The first step in TMDL development for biologically impaired waters is stressor identification (SI). Section 4 discusses the SI process. SI was followed by stream-specific determinations of the pollutants for which TMDLs must be developed. Organic enrichment and sedimentation were identified as causative stressors for the biologically impaired streams addressed in this effort.

Organic enrichment was identified as a significant biological stressor all three biologically impaired streams. All such waters also demonstrated violations of the numeric criteria for fecal coliform bacteria. It was determined that implementation of fecal coliform TMDLs would removed untreated sewage and significantly reduce animal wastes, thereby reducing the organic and nutrient loading causing the biological impairment.

Where sedimentation was identified as a significant stressor, sediment TMDLs were initially developed within the MDAS using a reference watershed approach. The MDAS was configured to examine upland sediment loading and streambank erosion and depositional processes. Load reductions for sediment-impaired waters were projected based upon the sediment loading present in an unimpaired reference watershed. All of the biologically impaired waters for which the SI process identified sedimentation as a significant stressor also exhibited impairment pursuant to
the numeric total iron water quality criteria and iron TMDLs are presented herein. For all of those waters, a strong, positive correlation between iron and total suspended solids (TSS) was identified and has been determined that the sediment reductions necessary for the attainment of iron water quality criteria exceed those necessary to address biological stress from sedimentation. As such, the iron TMDLs serve as surrogates for the biological impairments caused by sedimentation.

Within this effort, the iron TMDLs presented for troutwaters (Snowy Creek and North Branch Snowy Creek) do not assure complete attainment of the chronic aquatic life protection iron criterion. Criterion attainment would require pollutant reductions from existing sources that are well beyond practical levels, coupled with significant reductions of undisturbed upland and streambank background loadings, and no provisions for future growth. The relatively high iron content of the soils in the watershed is the primary influencing factor. An adaptive implementation approach is proposed (see Section 9.7.1) under which source allocations necessary to universally achieve the iron criterion for warmwater fisheries (1.5 mg/L, 4-day average, once per three years average exceedance frequency) are implemented concurrently with additional study of the situation.

This report summarizes the TMDL development and modeling processes, identifies impaired streams and existing pollutant sources, discusses future growth and TMDL achievability, and documents the public participation associated with the process. It also contains a detailed discussion of the allocation methodologies applied for various impairments. Various provisions attempt to ensure the attainment of criteria throughout the watershed, achieve equity among categories of sources, and target pollutant reductions from the most problematic sources. Nonpoint source reductions were not specified beyond natural (background) levels. Similarly, point source wasteload allocations (WLAs) were no more stringent than numeric water quality criteria.

Applicable TMDLs are displayed in Section 10 of this report. Accompanying spreadsheets provide TMDLs and allocations of loads to categories of point and nonpoint sources that achieve the total TMDL. Also provided is an interactive ArcExplorer geographic information system (GIS) project that allows for the exploration of spatial relationships among the source assessment data. A Technical Report is also available that describes the detailed technical approaches used in the process and displays data upon which the TMDLs are based.

Considerable resources were used to acquire recent water quality and pollutant source information upon which the TMDLs are based. The TMDL modeling is among the most sophisticated available, and incorporates sound scientific principles. TMDL outputs are presented in various formats to assist user comprehension and facilitate use in implementation.
1.0 REPORT FORMAT

This report describes the overall total maximum daily load (TMDL) development process for the Youghiogheny River watershed, identifies impaired streams, and outlines the source assessment for all pollutants for which TMDLs are presented. It also describes the modeling and allocation processes and lists measures that will be taken to ensure that the TMDLs are met. The applicable TMDLs are displayed in Section 10 of this report. The report is supported by a compact disc containing an interactive ArcExplorer GIS project that provides further details on the data and allows the user to explore the spatial relationships among the source assessment data. With this tool, users can magnify streams and other features of interest. Also included on the CD are spreadsheets (in Microsoft Excel format) that provide detailed source allocations associated with successful TMDL scenarios. A Technical Report is also included that describes the detailed technical approaches used in the process and displays data upon which the TMDLs are based.

2.0 INTRODUCTION

The West Virginia Department of Environmental Protection (WVDEP), Division of Water and Waste Management (DWWM), is responsible for the protection, restoration, and enhancement of the state’s waters. Along with this duty comes the responsibility for TMDL development in West Virginia.

2.1 Total Maximum Daily Loads

Section 303(d) of the federal Clean Water Act and the U.S. Environmental Protection Agency’s (USEPA) Water Quality Planning and Management Regulations (at Title 40 of the Code of Federal Regulations [CFR] Part 130) require states to identify waterbodies that do not meet water quality standards and to develop appropriate TMDLs. A TMDL establishes the maximum allowable pollutant loading for a waterbody to achieve compliance with applicable standards. It also distributes the load among pollutant sources and provides a basis for the actions needed to restore water quality.

A TMDL is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include a margin of safety (MOS), implicitly or explicitly, that accounts for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. TMDLs can be expressed in terms of mass per time or other appropriate units. Conceptually, this definition is denoted by the following equation:

\[
\text{TMDL} = \text{sum of WLAs} + \text{sum of LAs} + \text{MOS}
\]

WVDEP is committed to implementing a TMDL process that reflects the requirements of the TMDL regulations, provides for the achievement of water quality standards, and ensures that ample stakeholder participation is achieved in the development and implementation of TMDLs. A 48-month development process enables the agency to carry out an extensive data generating
and gathering effort to produce scientifically defensible TMDLs. It also allows ample time for modeling, report finalization, and frequent public participation opportunities.

The TMDL development process begins with pre-TMDL water quality monitoring and source identification and characterization. Informational public meetings are held in the affected watersheds. Data obtained from pre-TMDL efforts are compiled, and the impaired waters are modeled to determine baseline conditions and the gross pollutant reductions needed to achieve water quality standards. WVDEP then presents its allocation strategies in a second public meeting, after which final TMDL reports are developed. The draft TMDL is advertised for public review and comment, and a third informational meeting is held during the public comment period. Public comments are addressed, and the draft TMDL is submitted to USEPA for approval.
2.2 Water Quality Standards

The determination of impaired waters involves comparing instream conditions to applicable water quality standards. West Virginia’s water quality standards are codified at Title 47 of the Code of State Rules (CSR), Series 2, titled Legislative Rules, Department of Environmental Protection: Requirements Governing Water Quality Standards. These standards can be obtained online from the West Virginia Secretary of State internet site (http://www.wvsos.com/csr/verify.asp?TitleSeries=47-02).

Water quality standards consist of three components: designated uses; narrative and/or numeric water quality criteria necessary to support those uses; and an antidegradation policy. Appendix E of the Standards contains the numeric water quality criteria for a wide range of parameters, while Section 3 of the Standards contains the narrative water quality criteria.

Designated uses include: propagation and maintenance of aquatic life in warmwater fisheries and troutwaters, water contact recreation, and public water supply. Most of the impaired waterbodies in the Youghiogheny River watershed are designated as warmwater fisheries, but there are a few impaired streams designated as troutwaters (Snowy Creek, North Branch/Snowy Creek, Rhine Creek and Maple Run). For the impaired waters of this report, West Virginia total iron and dissolved aluminum aquatic life protection numeric water quality criteria vary with respect to warmwater fisheries and troutwaters. In various streams in the Youghiogheny River watershed, warmwater fishery and troutwater aquatic life use impairments have been determined pursuant to exceedances of total iron, dissolved aluminum, and/or pH numeric water quality criteria. Water contact recreation and/or public water supply use impairments have also been determined in various waters pursuant to exceedances of numeric water quality criteria for fecal coliform bacteria.

All West Virginia waters are subject to the narrative criteria in Section 3 of the Standards. That section, titled “Conditions Not Allowable in State Waters,” contains various general provisions related to water quality. The narrative water quality criterion at Title 47 CSR Series 2 – 3.2.i prohibits the presence of wastes in state waters that cause or contribute to significant adverse impacts to the chemical, physical, hydrologic, and biological components of aquatic ecosystems. This provision is the basis for “biological impairment” determinations. Biological impairment signifies a stressed aquatic community, and is discussed in detail in Section 4.

The numeric water quality criteria applicable to the impaired streams addressed by this report are summarized in Table 2-1. The stream-specific impairments related to both numeric and narrative water quality criteria are displayed in Table 3-3.

Two streams found to be in violation of West Virginia numeric criteria for pH exit West Virginia and enter Maryland. Maryland water quality standards include a numeric water quality criterion for pH that is different than the West Virginia criterion. In West Virginia, pH is to be within 6.0 and 9.0 standard units at all times, and in Maryland it is to be within 6.5 and 8.5 standard units. The pH TMDLs developed for Laurel Run and Buffalo Run are based upon a lower pH criterion of 6.5 standard units so as to ensure protection of water quality standards in the downstream waters of Maryland.
TMDLs presented herein are based upon the water quality criteria that are currently effective. If the West Virginia Legislature adopts water quality standard revisions that alter the basis upon which the TMDLs are developed, then the TMDLs and allocations may be modified as warranted. Any future Water Quality Standard revision and/or TMDL modification must receive EPA approval prior to implementation.

Table 2-1. Applicable West Virginia water quality criteria

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>USE DESIGNATION</th>
<th>Acute^a</th>
<th>Chronic^b</th>
<th>Acute^a</th>
<th>Chronic^b</th>
<th>Human Health Contact Recreation/Public Water Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Warmwater Fisheries</td>
<td></td>
<td>Troutwaters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, dissolved (μg/L)</td>
<td></td>
<td>750</td>
<td>750</td>
<td>750</td>
<td>87</td>
<td>--</td>
</tr>
<tr>
<td>Iron, total (mg/L)</td>
<td></td>
<td>--</td>
<td>1.5</td>
<td>--</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>No values below 6.0 or above 9.0</td>
<td></td>
</tr>
<tr>
<td>Fecal coliform bacteria</td>
<td>Human Health Criteria</td>
<td>Maximum allowable level of fecal coliform content for Primary Contact Recreation (either MPN [most probable number] or MF [membrane filter counts/test]) shall not exceed 200/100 mL as a monthly geometric mean based on not less than 5 samples per month; nor to exceed 400/100 mL in more than 10 percent of all samples taken during the month.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a One-hour average concentration not to be exceeded more than once every 3 years on the average.

^b Four-day average concentration not to be exceeded more than once every 3 years on the average.

Source: 47 CSR, Series 2, Legislative Rules, Department of Environmental Protection: Requirements Governing Water Quality Standards.

3.0 WATERSHED DESCRIPTION AND DATA INVENTORY

3.1 Watershed Description

As shown in Figure 3-1, the Youghiogheny River watershed in West Virginia lies mostly within Preston County. In West Virginia, its drainage area encompasses approximately 72.3 square miles. Major West Virginia tributaries include Maple Run, Rhine Creek and Snowy Creek. The average elevation in the watershed in West Virginia is 2,714 feet. The highest point is 3,242 feet on Brushy Knobs approximately two miles north of Aurora, West Virginia. The minimum elevation in West Virginia is 2,187 feet where I-68 crosses the Preston County/Garrett County border between West Virginia and Maryland. The total population living in the subject watersheds of this report is estimated to be about 5,000 people.

A small portion of the Maple Run watershed lies in Maryland. A specific subwatershed for the Maryland area was delineated, but no pollutant reductions were determined necessary in this subwatershed.
Figure 3-1. Location of the Youghiogheny River watershed in West Virginia
Table 3-1 displays the land use distribution for the 74 modeled subwatersheds in the Youghiogheny River watershed. The dominant land use is forest, which constitutes 72.0 percent of the total land use area. Other important modeled land use types are urban/residential (10.4 percent), cropland (7.6 percent), grassland (4.1 percent), and pasture (2.5 percent).

Land use and land cover estimates were originally obtained from vegetation data gathered from the National Land Cover Dataset (NLCD) 2001. The Multi-Resolution Land Characteristics Consortium (MRLC) produced the NLCD coverage. The NLCD database for West Virginia was derived from satellite imagery taken during the early 2000s, and it includes detailed vegetative spatial data. Enhancements and updates to the NLCD coverage were made to create a modeled land use by custom edits derived primarily from WVDEP source tracking information and 2003 aerial photography with 1-meter resolution. Additional information regarding the NLCD spatial database is provided in Appendix C of the Technical Report.

Table 3-1. Modified land use for the Youghiogheny River TMDL watersheds

<table>
<thead>
<tr>
<th>Landuse Type</th>
<th>Area of Watershed</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td>Square Miles</td>
<td>Percentage</td>
</tr>
<tr>
<td>Water</td>
<td>203.49</td>
<td>0.318</td>
<td>1.01</td>
</tr>
<tr>
<td>Wetland</td>
<td>331.37</td>
<td>0.518</td>
<td>1.64</td>
</tr>
<tr>
<td>Barren</td>
<td>128.50</td>
<td>0.201</td>
<td>0.64</td>
</tr>
<tr>
<td>Forest</td>
<td>14558.33</td>
<td>22.747</td>
<td>72.04</td>
</tr>
<tr>
<td>Grassland</td>
<td>839.54</td>
<td>1.312</td>
<td>4.15</td>
</tr>
<tr>
<td>Cropland</td>
<td>1536.40</td>
<td>2.401</td>
<td>7.60</td>
</tr>
<tr>
<td>Pasture</td>
<td>507.50</td>
<td>0.793</td>
<td>2.51</td>
</tr>
<tr>
<td>Urban/Residential</td>
<td>2100.82</td>
<td>3.283</td>
<td>10.40</td>
</tr>
<tr>
<td>Mining</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
</tr>
<tr>
<td>AML</td>
<td>2.43</td>
<td>0.004</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Area</td>
<td>20208.38</td>
<td>31.576</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Note: <= less than

3.2 Data Inventory

Various sources of data were used in the TMDL development process. The data were used to identify and characterize sources of pollution and to establish the water quality response to those sources. Review of the data included a preliminary assessment of the watershed’s physical and socioeconomic characteristics and current monitoring data. Table 3-2 identifies the data used to support the TMDL assessment and modeling effort. These data describe the physical conditions of the TMDL watersheds, the potential pollutant sources and their contributions, and the impaired waterbodies for which TMDLs need to be developed. Prior to TMDL development, WVDEP collected comprehensive water quality data throughout the watershed. This pre-TMDL monitoring effort contributed the largest amount of water quality data to the process and is
summarized in the Technical Report, Appendix I. The geographic information is provided in the ArcExplorer GIS project included on the CD version of this report.

Table 3-2. Datasets used in TMDL development

<table>
<thead>
<tr>
<th>Type of Information</th>
<th>Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed physiographic data</td>
<td></td>
</tr>
<tr>
<td>Stream network</td>
<td>West Virginia Division of Natural Resources (WVDNR)</td>
</tr>
<tr>
<td>Landuse</td>
<td>National Land Cover Dataset 2001 (NLCD)</td>
</tr>
<tr>
<td>2003 Aerial Photography (1-meter resolution)</td>
<td>WVDEP</td>
</tr>
<tr>
<td>Counties</td>
<td>U.S. Census Bureau</td>
</tr>
<tr>
<td>Cities/populated places</td>
<td>U.S. Census Bureau</td>
</tr>
<tr>
<td>Soils</td>
<td>State Soil Geographic Database (STATSGO) U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) soil surveys</td>
</tr>
<tr>
<td>Hydrologic Unit Code boundaries</td>
<td>U.S. Geological Survey (USGS)</td>
</tr>
<tr>
<td>Topographic and digital elevation models (DEM)</td>
<td>National Elevation Dataset (NED)</td>
</tr>
<tr>
<td>Dam locations</td>
<td>USGS</td>
</tr>
<tr>
<td>Roads</td>
<td>U.S. Census Bureau TIGER, WVU, WV Roads</td>
</tr>
<tr>
<td>Water quality monitoring station locations</td>
<td>WVDEP, USEPA STORET</td>
</tr>
<tr>
<td>Meteorological station locations</td>
<td>National Oceanic and Atmospheric Administration, National Climatic Data Center (NOAA-NCDC)</td>
</tr>
<tr>
<td>Permitted facility information</td>
<td>WVDEP Division of Water and Waste Management (DWWM), WVDEP Division of Mining and Reclamation (DMR)</td>
</tr>
<tr>
<td>Timber harvest data</td>
<td>WV Division of Forestry</td>
</tr>
<tr>
<td>Abandoned mining coverage</td>
<td>WVDEP DMR</td>
</tr>
<tr>
<td>Monitoring data</td>
<td></td>
</tr>
<tr>
<td>Historical Flow Record (daily averages)</td>
<td>USGS</td>
</tr>
<tr>
<td>Rainfall</td>
<td>NOAA-NCDC</td>
</tr>
<tr>
<td>Temperature</td>
<td>NOAA-NCDC</td>
</tr>
<tr>
<td>Wind speed</td>
<td>NOAA-NCDC</td>
</tr>
<tr>
<td>Dew point</td>
<td>NOAA-NCDC</td>
</tr>
<tr>
<td>Humidity</td>
<td>NOAA-NCDC</td>
</tr>
<tr>
<td>Cloud cover</td>
<td>NOAA-NCDC</td>
</tr>
<tr>
<td>Water quality monitoring data</td>
<td>USEPA STORET, WVDEP</td>
</tr>
<tr>
<td>National Pollutant Discharge Elimination System (NPDES) data</td>
<td>WVDEP DMR, WVDEP DWWM</td>
</tr>
<tr>
<td>Discharge Monitoring Report data</td>
<td>WVDEP DMR, Mining Companies</td>
</tr>
<tr>
<td>Abandoned mine land data</td>
<td>WVDEP DMR, WVDEP DWWM</td>
</tr>
<tr>
<td>Regulatory or policy information</td>
<td></td>
</tr>
<tr>
<td>Applicable water quality standards</td>
<td>WVDEP</td>
</tr>
<tr>
<td>Section 303(d) list of impaired waterbodies</td>
<td>WVDEP, USEPA</td>
</tr>
<tr>
<td>Nonpoint Source Management Plans</td>
<td>WVDEP</td>
</tr>
</tbody>
</table>
3.3 Impaired Waterbodies

WVDEP conducted extensive water quality monitoring throughout the Youghiogheny River watershed from July 2005 through June 2006. The results of that effort were used to confirm the impairments of waterbodies identified on previous 303(d) lists and to identify other impaired waterbodies that were not previously listed.

In this TMDL development effort, modeling at baseline conditions demonstrated additional pollutant impairments to those identified via monitoring. The prediction of impairment through modeling is validated by applicable federal guidance for 303(d) listing. WVDEP could not perform water quality monitoring and source characterization at frequencies or sample location resolution sufficient to comprehensively assess water quality under the terms of applicable water quality standards, and modeling was needed to complete the assessment. Where existing pollutant sources were predicted to cause noncompliance with a particular criterion, the subject water was characterized as impaired for that pollutant.

TMDLs were developed for impaired waters in 4 TMDL watersheds (Figure 3-2). The impaired waters for which TMDLs have been developed are presented in Table 3-3. The table includes the TMDL watershed, stream code, stream name, and impairments for each stream.
Figure 3-2. 4 Youghiogheny River TMDL watersheds
Table 3-3. Waterbodies and impairments for which TMDLs have been developed

<table>
<thead>
<tr>
<th>TMDL Watershed</th>
<th>Stream Name</th>
<th>Code</th>
<th>Trout</th>
<th>Fe</th>
<th>Al</th>
<th>pH</th>
<th>FC</th>
<th>BIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo Run</td>
<td>Buffalo Run</td>
<td>WV-MY-123</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>Snowy Creek</td>
<td>WV-MY-169</td>
<td>Yes</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>North Branch/Snowy Creek</td>
<td>WV-MY-169-I</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>Laurel Run</td>
<td>WV-MY-169-A</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>Little Laurel Run</td>
<td>WV-MY-169-A-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>Wardwell Run</td>
<td>WV-MY-169-I-3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>South Branch/Snowy Creek</td>
<td>WV-MY-169-J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Rhine Creek</td>
<td>Rhine Creek</td>
<td>WV-MY-179</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Maple Run</td>
<td>Maple Run</td>
<td>WV-MY-184</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maple Run</td>
<td>UNT/Maple Run RM 5.22</td>
<td>WV-MY-184-F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note:
UNT = unnamed tributary; RM = river mile.
FC indicates fecal coliform bacteria impairment
BIO indicates a biological impairment
4.0 BIOLOGICAL IMPAIRMENT AND STRESSOR IDENTIFICATION

Initially, TMDL development in biologically impaired waters requires identification of the pollutants that cause the stress to the biological community. The common sources of those pollutants include: mine drainage, untreated sewage, and sediment. This section is intended to be a brief summary; Section 2 of the Technical Report discusses biological impairment and the SI process in detail.

4.1 Introduction

Assessment of the biological integrity of a stream is based on a survey of the stream’s benthic macroinvertebrate community. Benthic macroinvertebrate communities are rated using a multimetric index developed for use in wadeable streams of West Virginia. The West Virginia Stream Condition Index (WVSCI; Gerritsen et al., 2000) is composed of six metrics that were selected to maximize discrimination between streams with known impairments and reference streams. In general, streams with WVSCI scores of fewer than 60.6 points, on a normalized 0–100 scale, are considered biologically impaired.

Biological assessments are useful in detecting impairment, but they may not clearly identify the causes of impairment, which must be determined before TMDL development can proceed. USEPA developed Stressor Identification: Technical Guidance Document (Cormier et al., 2000) to assist water resource managers in identifying stressors and stressor combinations that cause biological impairment. Elements of the SI process were used to evaluate and identify the significant stressors to the impaired benthic communities. In addition, custom analyses of biological data were performed to supplement the framework recommended by the guidance document.

The general SI process entailed reviewing available information, forming and analyzing possible stressor scenarios, and implicating causative stressors. The SI method provides a consistent process for evaluating available information. TMDLs were established for the responsible pollutants at the conclusion of the SI process. As a result, the TMDL process established a link between the impairment and benthic community stressors.

4.2 Data Review

WVDEP generated the primary data used in SI through its pre-TMDL monitoring program. The program included water quality monitoring, benthic sampling, and habitat assessment. In addition, the biologists’ comments regarding stream condition and potential stressors and sources were captured and considered. Other data sources were: source tracking data, WVDEP mining activities data, NLCD 2001 landuse information, Natural Resources Conservation Service (NRCS) State Soil Geographic database (STATSGO) soils data, NPDES point source data, and literature sources.
4.3 Candidate Causes/Pathways

The first step in the SI process was to develop a list of candidate causes, or stressors. The candidate causes responsible for biological impairments are listed below:

- Metals contamination (including metals contributed through soil erosion) causes toxicity
- Acidity (low pH) causes toxicity
- Increased ionic strength causes toxicity
- Organic enrichment (e.g. sewage discharges and agricultural runoff cause habitat alterations)
- Increased total suspended solids (TSS)/erosion and altered hydrology cause sedimentation and other habitat alterations
- Altered hydrology causes higher water temperature, resulting in direct impacts
- Altered hydrology, nutrient enrichment, and increased biochemical oxygen demand (BOD) cause reduced dissolved oxygen (DO)
- Algal growth causes food supply shift
- High levels of ammonia cause toxicity (including increased toxicity due to algal growth)
- Chemical spills cause toxicity

A conceptual model was developed to examine the relationship between candidate causes and potential biological effects. The conceptual model (Figure 4-1) depicts the sources, stressors, and pathways that affect the biological community.
Potential sources are listed in top-most rectangles. Potential stressors and interactions are in ovals. Candidate causes are numbered (1) through (12) (see next slide). Note that some causes have more than one stressor or more than one associated step.

Figure 4-1. Conceptual model of candidate causes and potential biological effects
4.4 **Stressor Identification Results**

The SI process determined the significant causes of biological impairment. Biological impairment was linked to a single stressor in some cases and multiple stressors in others. The SI process identified the following stressors for the biologically impaired waters in the Youghiogheny River watershed:

- Organic enrichment (the combined effects of oxygen-demanding pollutants, nutrients, and the resultant algal and habitat alteration)
- Sedimentation

After stressors were identified, WVDEP determined the pollutants for which TMDLs were required to address the impairment. The biologically impaired streams, biological stressors identified during the SI process and the TMDL required are presented in Table 4-1 below.

Where the SI process identified organic enrichment as the cause of biological impairment, data also indicated violations of the fecal coliform water quality criteria. The predominant sources of both organic enrichment and fecal coliform bacteria in the watershed are inadequately treated sewage and runoff from agricultural landuses. WVDEP determined that implementation of fecal coliform TMDLs would remove untreated sewage and significantly reduce loadings in agricultural runoff and resolve the biological impairment in these streams. Therefore, fecal coliform TMDLs will serve as a surrogate where organic enrichment was identified as a stressor.

WVDEP initially pursued the development of TMDLs directly for sediment to address the sedimentation biological stressor. The intended approach involved selection of a reference stream with an unimpaired biological condition, prediction of the sediment loading present in the reference stream, and use of the area-normalized sediment loading of the reference stream as the TMDL endpoint for sediment impaired waters.

Little Laurel Run (WV-MY-169-A-3) was selected as the achievable reference stream as it shares similar landuse, ecoregion and geomorphologic characteristics with the sediment impaired streams. The location of Little Laurel Run is shown in Figure 4-2.

Snowy Creek and Wardwell Run are biologically impaired waters for which sedimentation was identified as a significant stressor. The TMDL assessment for iron included representation and allocation of iron loadings associated with sediment. In each stream, the sediment loading reduction necessary for attainment of water quality criteria for iron exceeds that which was determined to be necessary using the reference approach. As such, the iron TMDLs are acceptable surrogates for biological impairments from sedimentation.
Table 4-1. Significant stressors of biologically impaired streams

<table>
<thead>
<tr>
<th>TMDL Watershed</th>
<th>Stream Name</th>
<th>NHD_Code</th>
<th>Biological Stressors</th>
<th>TMDLs Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowy Creek</td>
<td>Snowy Creek</td>
<td>WV-MY-169</td>
<td>Sedimentation, Organic Enrichment</td>
<td>Total Iron, Fecal Coliform</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>Wardwell Run</td>
<td>WV-MY-169-1-3</td>
<td>Organic Enrichment, Sedimentation</td>
<td>Fecal Coliform, Total Iron</td>
</tr>
<tr>
<td>Maple Run</td>
<td>Maple Run</td>
<td>WV-MY-184</td>
<td>Organic Enrichment</td>
<td>Fecal Coliform</td>
</tr>
</tbody>
</table>
Figure 4-2. Location of the sediment reference stream, Little Laurel Run (WV-MY-169-A-3)
5.0 METALS SOURCE ASSESSMENT

This section identifies and examines the potential sources of iron and aluminum impairments in the Youghiogheny River watershed. Sources can be classified as point (permitted) or nonpoint (non-permitted) sources.

A point source, according to 40 CFR 122.3, is any discernible, confined, and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, landfill leachate collection system, and vessel or other floating craft from which pollutants are or may be discharged. The National Pollutant Discharge Elimination System (NPDES) program, established under Clean Water Act Sections 318, 402, and 405, requires permits for the discharge of pollutants from point sources. For purposes of this TMDL, NPDES-permitted discharge points are considered point sources.

Nonpoint sources of pollutants are diffuse, non-permitted sources. They most often result from precipitation-driven runoff. For the purposes of these TMDLs only, WLAs are given to NPDES-permitted discharge points, and LAs are given to discharges from activities that do not have an associated NPDES permit, such as AML. The assignment of LAs to AML does not reflect any determination by WVDEP or USEPA as to whether there are, in fact, unpermitted point source discharges within these landuses. Likewise, by establishing these TMDLs with AML discharges treated as LAs, WVDEP and USEPA are not determining that these discharges are exempt from NPDES permitting requirements.

The physiographic data discussed in Section 3 enabled the characterization of pollutant sources. As part of the TMDL development process, WVDEP performed additional field-based source tracking activities to supplement the available source characterization data. WVDEP staff recorded physical descriptions of pollutant sources and the general stream condition in the vicinity of the sources. WVDEP collected global positioning system (GPS) data and water quality samples for laboratory analysis as necessary to characterize the sources and their impacts. Source tracking information was compiled and electronically plotted on maps using GIS software. Detailed information, including the locations of pollutant sources, is provided in the following sections, the Technical Report, and the ArcExplorer project on the CD version of this TMDL report.

5.1 Metals Point Sources

Metals point sources are classified by the mining- and non-mining-related permits issued by WVDEP. The following sections discuss the potential impacts and the characterization of these source types, the locations of which are displayed in Figure 5-1.
NOTE: Some mapped features in close proximity to each other may plot as one location on the map.

Figure 5-1. Metals sources in the Youghiogheny River watershed
5.1.1 Mining Point Sources

Untreated mining-related point source discharges from deep, surface, and other mines may have low pH values (i.e. acidic) and contain high concentrations of metals (iron and aluminum). Mining-related activities are commonly issued NPDES discharge permits that contain effluent limits for total iron, total manganese, total suspended solids, and pH. Many permits also include effluent monitoring requirements for total aluminum and some, more recently issued permits include aluminum water quality based effluent limits. WVDEP’s Division of Mining and Reclamation (DMR) provided a spatial coverage of the mining-related NPDES permit outlets indicating no mining-related NPDES permits in the metals impaired watersheds.

5.1.2 Non-mining Point Sources

WVDEP DWWM controls water quality impacts from non-mining activities with point source discharges through the issuance of NPDES permits. WVDEP’s OWRNPDES GIS coverage was used to determine the locations of these sources, and detailed permit information was obtained from WVDEP’s ERIS database. Sources may include the process wastewater discharges from water treatment plants and industrial manufacturing operations, and stormwater discharges associated with industrial activity.

There are two modeled non-mining NPDES permit outlets in the watersheds of metals impaired streams. One permit regulates stormwater associated with industrial activity and implements stormwater benchmark values of 100 mg/L TSS and/or 1.0 mg/L total iron. The other permit regulates the discharge of treated filter backwash from a water treatment plant and contains specific effluent limitations for iron and aluminum. The permit locations are displayed in Figure 5-1. The assigned WLAs allow for continued discharge under existing permit requirements. A complete list of the permits and outlets is provided in Appendix G of the Technical Report.

5.1.3 Construction Stormwater Permits

The discharges from construction activities that disturb more than one acre of land are legally defined as point sources and the sediment introduced from such discharges can contribute iron and aluminum. WVDEP issues a General NPDES Permit (permit WV0115924) to regulate stormwater discharges associated with construction activities with a land disturbance greater than one acre. These permits require that the site have properly installed best management practices (BMPs), such as silt fences, sediment traps, seeding/mulching, and riprap, to prevent or reduce erosion and sediment runoff. The BMPs will remain intact until the construction is complete and the site has been stabilized. Individual registration under the General Permit is usually limited to less than one year.

There are five active construction sites (Figure 5-1) with a total disturbed acreage of 14.8 acres registered under the Construction Stormwater General Permit in the watersheds of metals or sediment impaired waters. Although specific wasteload allocations are not prescribed for these sites, the associated disturbed areas conform to the subwatershed-based allocations for registrations under the permit, as described in Section 11.0.
5.2 Metals Nonpoint Sources

In addition to point sources, nonpoint sources can contribute to water quality impairments related to metals. AML may contribute acid mine drainage (AMD), which produces low pH and high metals concentrations in surface and subsurface water. Similarly, facilities that were subject to the Surface Mining Control and Reclamation Act of 1977 (SMCRA, Public Law 95-87) during active operations and subsequently forfeited their bonds and abandoned operations can be a significant source of metals. Also, land disturbing activities that introduce excess sediment are considered nonpoint sources of metals.

5.2.1 Abandoned Mine Lands and Bond Forfeiture Sites

WVDEP’s Office of Abandoned Mine Lands & Reclamation (AML&R) was created in 1981 to manage the reclamation of lands and waters affected by mining prior to passage of SMCRA in 1977. AML&R’s mission is to protect public health, safety, and property from past coal mining and to enhance the environment through the reclamation and restoration of land and water resources. The AML program is funded by a fee placed on coal mining. Allocations from the AML fund are made to state and tribal agencies through the congressional budgetary process.

The Office of AML&R identified locations of AML in the Youghiogheny River watershed from their records. In addition, source tracking efforts by WVDEP DWWM and AML&R identified additional AML sources (discharges, seeps, portals, and refuse piles). Field data, such as GPS locations, water samples, and flow measurements, were collected to represent these sources and characterize their impact on water quality. Based on this work, AML represent a significant source of metals in certain metals impaired streams for which TMDLs are presented. In TMDL watersheds with metals impairments, a total of 2 AML seeps, and 0.3 miles (2.4 acres) of highwall were incorporated into the TMDL model. AML highwalls, areas and seeps are shown in Figure 5-1. No unreclaimed bond forfeiture sites were identified in the watersheds of metals impaired streams.

5.2.2 Sediment Sources

Land disturbance can increase sediment loading to impaired waters. The control of sediment-producing sources has been determined to be necessary to meet water quality criteria for total iron during high-flow conditions. Nonpoint sources of sediment may include forestry operations, oil and gas operations, roads, agriculture, stormwater from construction sites less than one acre, and stormwater from urban and residential land. Additionally, streambank erosion represents a significant sediment source throughout the watershed. Upland sediment nonpoint sources are summarized below.

Forestry
West Virginia recognizes the water quality issues posed by sediment from logging sites. In 1992, the West Virginia Legislature passed the Logging Sediment Control Act. The act requires registration of logging activity and the use of best management practices (BMPs) to reduce sediment loads to nearby waterbodies. The West Virginia Bureau of Commerce’s Division of Forestry indicated that there were no logging sites registered in the metals impaired TMDL watersheds over the previous three years. The Bureau also provided information regarding forest
fires which supported the representation of 1.2 acres of burned forest in the metal impaired watersheds.

Oil and Gas

The WVDEP Office of Oil and Gas (OOG) is responsible for monitoring and regulating all actions related to the exploration, drilling, storage, and production of oil and natural gas in West Virginia. It maintains records on more than 40,000 active and 25,000 inactive oil and gas wells, and manages the Abandoned Well Plugging and Reclamation Program. The OOG also ensures that surface water and groundwater are protected from oil and gas activities.

Oil and gas well data obtained from the WVDEP OOG GIS coverage indicated no active oil and gas wells in the metals impaired TMDL watersheds addressed in this report.

Roads

Heightened stormwater runoff from paved roads (impervious surface) can increase erosion potential. Unpaved roads can contribute sediment through precipitation-driven runoff. Roads that traverse stream paths elevate the potential for direct deposition of sediment. Road construction and repair can further increase sediment loads if BMPs are not properly employed.

Information on roads was obtained from various sources, including the 2000 TIGER/Line shapefiles from the U.S. Census Bureau and the WV Roads GIS coverage prepared by West Virginia University. Unpaved roads that were not included in either GIS coverage were digitized from topographic maps.

Agriculture

Agricultural activities can contribute sediment loads to nearby streams. While agricultural landuses account for approximately 10.1 percent of the modeled land area in metals impaired TMDL watersheds, source tracking information shows minimal impact from these sources.

Streambank Erosion

Streambank erosion has been determined to be a significant sediment source. The sediment loading from bank erosion is considered a nonpoint source and LAs are assigned. The streambank erosion modeling process is discussed in Section 9.2.2.

Other Land-Disturbance Activities

Stormwater runoff from residential and urban landuses is a significant source of sediment in parts of the watershed. The modified NLCD2001 landuse data were used to determine the extent of residential and urban areas and source representation was based upon precipitation and runoff.

The NLCD 2001 landuse data also classifies certain areas as “barren” land. In the model configuration process, portions of the barren landuse were reclassified to account for known abandoned mine lands sources. The remainder is represented as a specific nonpoint source category in the model.
Construction activities disturbing less than one acre are not subject to construction stormwater permitting. While not specifically represented in the model, their impact is indirectly accounted for in the loading rates established for the urban/residential landuse category.

6.0 PH SOURCES

The pH impairments in the Youghiogheny River watershed have been attributed to two source categories. In areas where historical, unregulated mining occurred, discharges from AML continue to introduce drainage of low pH and high dissolved metals. In contrast, the low pH impairments of waters in relatively pristine areas are the result of acid precipitation and the low buffering capacity of the watershed. WVDEP source tracking and pre-TMDL water quality monitoring were used to determine the causative sources.

Discharges from historical mining activities can cause low pH impairments, iron and/or aluminum impairments. Because of the complex chemical interactions that occur between dissolved metals and acidity, the TMDL approach focused on reducing metals concentrations to meet metals water quality criteria while accounting for watershed dynamics associated with acidic atmospheric deposition and low watershed buffering capacity. Where appropriate, the approach prescribes the necessary reductions associated with the metals TMDL condition and presents the net alkalinity additions necessary to achieve the pH water quality criteria. Table 6-1 shows the pH impaired streams and the causative sources of the impairment.

Table 6-1. Causative sources of pH impaired streams

<table>
<thead>
<tr>
<th>TMDL Watershed</th>
<th>Stream Name</th>
<th>NHD Code</th>
<th>Causative Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo Run</td>
<td>Buffalo Run</td>
<td>WV-MY-123</td>
<td>Acid deposition</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>Laurel Run</td>
<td>WV-MY-169-A</td>
<td>Historic Mining and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acid deposition</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>Little Laurel Run</td>
<td>WV-MY-169-A-3</td>
<td>Acid deposition</td>
</tr>
</tbody>
</table>

6.1 Acid Deposition

Acid rain is produced when atmospheric moisture reacts with gases to form sulfuric acid, nitric acid, and carbonic acid. These gases are primarily formed from nitrogen dioxides and sulfur dioxide, which enter the atmosphere through exhaust and smoke from burning fossil fuels such as gas, oil, and coal. Two-thirds of sulfur dioxides and one-forth of nitrogen oxides present in the atmosphere are attributed to fossil fuel burning electric power generating plants (USEPA, 2005d). Acid rain crosses watershed boundaries and may originate in the Ohio valley or the midwest.

The majority of the acid deposition occurs in the eastern United States. In March 2005, the USEPA issued the Clean Air Interstate Rule (CAIR), which places caps on emissions for sulfur dioxide and nitrogen dioxides for the eastern United States. It is expected that CAIR will reduce sulfur dioxide emissions by over 70 percent and nitrogen oxides emissions by over 60 percent from the 2003 emission levels (USEPA, 2005c). Since the pollution is highly mobile in the
atmosphere, reductions based on CAIR in West Virginia, Ohio, and Pennsylvania will likely improve the quality of precipitation in the watershed.

Atmospheric deposition occurs by two main methods: wet and dry. Wet deposition occurs through rain, fog, and snow. Dry deposition occurs from gases and particles. Dry deposition accounts for approximately half of the atmospheric deposition of acidity (USEPA, 2005d). Particles and gases from dry deposition can be washed from trees, roofs, and other surfaces by precipitation after it is deposited and washed into streams. Winds blow the particles and gases contributing to acid deposition over large distances, including political boundaries, such as state boundaries.

Atmospheric deposition data were obtained from the USEPA Office of Air Quality Planning and Standards at Research Triangle Park, North Carolina. The data are a result of air quality modeling in support of the CAIR. The data include concentrations of sulfate and nitrogen oxides in wet and dry deposition. For the technical information on these data, please see the Technical Support Document for the Final Clean Air Interstate Rule – Air Quality Modeling (USEPA, 2005e). National Atmospheric Deposition Program (NADP) monitoring data collected at the USDA Forest Service Northeastern Research Station, Tucker County, WV was also used to characterize the extent of atmospheric deposition in the watershed.

6.2 pH – Natural Influences

Decreased pH levels in streams can be aided by natural conditions such as wetlands, more specifically, bogs; and the lack of stream buffering capacity. Bogs receive most of their water from precipitation, which is naturally acidic, and pH may be decreased from the natural decomposition of organic materials (MDE 2003). The other natural condition that may result in lowered pH levels is the lack of buffering capacity in soils and certain geologic formations. Acidic soils (e.g., Atkins, Brinkerton, Delkalb, Ernest, Gilpin, and Latham) and the Pottsville Sandstone formation (very low buffering capacity) are known to significantly influence the pH conditions.

7.0 FECAL COLIFORM SOURCE ASSESSMENT

7.1 Fecal Coliform Point Sources

Fecal coliform point sources may include the permitted discharges from sewage treatment plants. These facilities (including publicly and privately owned treatment works, and home aeration units) are regulated by NPDES permits. Permits require effluent disinfection and compliance with strict fecal coliform limitations (200 counts/100 milliliters (mL) [monthly geometric mean] and 400 counts/100 mL [maximum daily]). However, noncompliant discharges and collection system overflows can also contribute significant loadings of fecal coliform bacteria to receiving streams. WVDEP determined that there are no combined sewer overflows or sanitary sewer overflows within the TMDL watersheds of the Youghiogheny River watershed.
7.1.1 Individual NPDES Permits

WVDEP issues individual NPDES permits to both publicly owned and privately owned wastewater treatment facilities. Publicly owned treatment works (POTWs) are relatively large facilities with extensive wastewater collection systems, whereas private facilities are usually used in smaller applications such as subdivisions and shopping centers.

In the subject watersheds of this report, one individually permitted POTW (Terra Alta) and one individually permitted private sewage treatment facility (Alpine Lake Public Utilities Company) discharge treated effluent.

These sources are regulated by NPDES permits that require effluent disinfection and compliance with strict fecal coliform effluent limitations (200 counts/100 mL [monthly geometric mean] and 400 counts/100 mL [maximum daily]). Compliant facilities do not cause fecal coliform bacteria impairments because effluent limitations are more stringent than water quality criteria.

7.1.2 General Sewage Permits

General sewage permits are designed to cover like discharges from numerous individual owners and facilities throughout the state. General Permit WV0103110 regulates small, privately owned sewage treatment plants (“package plants”) that have a design flow of less than 50,000 gallons per day (gpd). General Permit WV0107000 regulates HAUs. HAUs are small sewage treatment plants primarily used by individual residences where site considerations preclude typical septic tank and leach field installation. Both general permits contain fecal coliform effluent limitations identical to those in individual NPDES permits for sewage treatment facilities. In the areas draining to streams for which fecal coliform TMDLs have been developed, there is one small sewage treatment plant (Aurora School) registered under the “package plant” general permit, and none that are registered under the “HAU” general permit.

7.2 Fecal Coliform Nonpoint Sources

7.2.1 On-site Treatment Systems

Failing septic systems and straight pipes contribute to fecal coliform impairments in the watershed. Information collected during source tracking efforts by WVDEP yielded an estimate of approximately 2,300 homes that are not served by centralized sewage collection and treatment systems. Estimated septic system failure rates across the watershed range from three percent to 28 percent.

Due to a wide range of available literature values relating to the bacteria loading associated with failing septic systems, a customized Microsoft Excel spreadsheet tool was created to represent the fecal coliform bacteria contribution from failing on-site septic systems. WVDEP’s pre-TMDL monitoring and source tracking data were used in the calculations. To calculate loads, values for both wastewater flow and fecal coliform concentration are needed.

To calculate failing septic wastewater flows, the TMDL watersheds were divided into four septic failure zones. During the WVDEP source tracking process, septic failure zones were delineated...
by soil characteristics (soil permeability, depth to bedrock, depth to groundwater and drainage capacity) as shown in United States Department of Agriculture (USDA) county soil survey maps. Two types of failure were considered, complete failure and periodic failure. For the purposes of this analysis, complete failure was defined as 50 gallons per house per day of untreated sewage escaping a septic system as overland flow to receiving waters and periodic failure was defined as 25 gallons per house per day. To demonstrate the relative intensity of this source, Figure 7-1 shows the failing septic flows per acre for each modeled subwatershed.

Once failing septic flows were modeled, a fecal coliform concentration was determined at the TMDL watershed scale. Based on past experience with other West Virginia TMDLs, a base concentration of 10,000 counts per 100 ml was used as a beginning concentration for failing septic systems. This concentration was further refined during model calibration. A sensitivity analysis was performed by varying the modeled failing septic concentrations in multiple model runs, and then comparing model output to pre-TMDL monitoring data. Additional details of the failing septic analyses are elucidated in the Technical Report.

For the purposes of this TMDL, discharges from activities that do not have an associated NPDES permit, such as failing septic systems and straight pipes, are considered nonpoint sources. The decision to assign LAs to those sources does not reflect a determination by WVDEP or USEPA as to whether they are, in fact, non-permitted point source discharges. Likewise, by establishing these TMDLs with failing septic systems and straight pipes treated as nonpoint sources, WVDEP and USEPA are not determining that such discharges are exempt from NPDES permitting requirements.
Figure 7-1. Failing septic flows in the Youghiogheny River watershed
7.2.2 Urban/Residential Runoff

Stormwater runoff from residential and urbanized areas can be a significant nonpoint source of fecal coliform bacteria. The modified NLCD 2001 landuse data were used to determine the extent of residential and urban areas and source representation was based upon precipitation and runoff.

7.2.3 Agriculture

Agricultural activities can contribute fecal coliform bacteria to receiving streams through surface runoff or direct deposition. Grazing livestock and land application of manure result in the deposition and accumulation of bacteria on land surfaces. These bacteria are then available for wash-off and transport during rain events. In addition, livestock with unrestricted access can deposit feces directly into streams.

Agricultural activity is fairly ubiquitous in the study area, with pasture/cropland landuses determined to be present in approximately two-thirds of the modeled subwatersheds. Source tracking efforts identified pastures and feedlots near impaired segments that have localized impacts on instream bacteria levels. Source representation was based upon precipitation and runoff, and source tracking information regarding number of livestock, proximity and access to stream, and overall runoff potential were used to develop accumulation rates.

7.2.4 Natural Background (Wildlife)

A certain “natural background” contribution of fecal coliform bacteria can be attributed to deposition by wildlife in forested areas. Accumulation rates for fecal coliform bacteria in forested areas were developed using reference numbers from past TMDLs, incorporating wildlife estimates obtained from West Virginia’s Division of Natural Resources (DNR). In addition, WVDEP conducted storm-sampling on a 100 percent forested subwatershed (Shrewsbury Hollow) within the Kanawha State Forest, Kanawha County, West Virginia to determine wildlife contributions of fecal coliform. These results were used during the model calibration process. On the basis of the low fecal accumulation rates for forested areas, the storm water sampling results, and model simulations, wildlife is not considered to be a significant nonpoint source of fecal coliform bacteria in the watershed.

8.0 SEDIMENT SOURCE ASSESSMENT

Excess sediment has been identified as a significant stressor in relation to the biological impairments in Snowy Creek and Wardwell Run in the Youghiogheny River watershed. It was determined that the sediment reductions necessary to ensure attainment of the iron water quality criteria exceed those that would be needed to address biological impairment through a reasonably achievable sediment reference approach. Therefore, the iron TMDLs are an appropriate surrogate. Sediment sources considered in the TMDL model are described in detail in Section 5.2.2.
9.0 MODELING PROCESS

Establishing the relationship between the instream water quality targets and source loadings is a critical component of TMDL development. It allows for the evaluation of management options that will achieve the desired source load reductions. The link can be established through a range of techniques, from qualitative assumptions based on sound scientific principles to sophisticated modeling techniques. Ideally, the linkage will be supported by monitoring data that allow the TMDL developer to associate certain waterbody responses with flow and loading conditions. This section presents the approach taken to develop the linkage between sources and instream response for TMDL development in the Youghiogheny River watershed.

9.1 Model Selection

Selection of the appropriate analytical technique for TMDL development was based on an evaluation of technical and regulatory criteria. The following key technical factors were considered in the selection process:

- Scale of analysis
- Point and nonpoint sources
- Metals and fecal coliform bacterial impairments are temporally variable and occur at low, average, and high flow conditions
- Dissolved aluminum impairments are related to pH water quality
- Total iron and total aluminum loadings and instream concentrations are related to sediment
- Time-variable aspects of land practices have a large effect on instream metals and bacteria concentrations
- Metals and bacteria transport mechanisms are highly variable and often weather-dependent
- pH impairments are temporally variable and related to wet and dry atmospheric acid deposition

The primary regulatory factor that influenced the selection process was West Virginia’s water quality criteria. According to 40 CFR Part 130, TMDLs must be designed to implement applicable water quality standards. The applicable water quality criteria for iron, aluminum, pH, and fecal coliform bacteria in West Virginia are presented in Section 2, Table 2-1. West Virginia numeric water quality criteria are applicable at all stream flows greater than the 7-day, 10-year low flow (7Q10). The approach or modeling technique must permit representation of instream concentrations under a variety of flow conditions to evaluate critical flow periods for comparison with criteria.
The TMDL development approach must also consider the dominant processes affecting pollutant loadings and instream fate. In the Youghiogheny River watershed, an array of point and nonpoint sources contributes to the various impairments. Most nonpoint sources are rainfall-driven with pollutant loadings primarily related to surface runoff, but some, such as AML seeps and inadequate onsite residential sewage treatment systems, function as continuous discharges. Similarly, certain point sources are precipitation-induced while others are continuous discharges. While loading function variations must be recognized in the representation of the various sources, the TMDL allocation process must prescribe WLAs for all contributing point sources and LAs for all contributing nonpoint sources.

The MDAS was developed specifically for TMDL application in West Virginia to facilitate large scale, data intensive watershed modeling applications. The MDAS is a system designed to support TMDL development for areas affected by nonpoint and point sources. The MDAS component most critical to TMDL development is the dynamic watershed model because it provides the linkage between source contributions and instream response. The MDAS is used to simulate watershed hydrology and pollutant transport as well as stream hydraulics and instream water quality. It is capable of simulating different flow regimes and pollutant loading variations. A key advantage of the MDAS’ development framework is that it has no inherent limitations in terms of modeling size or upper limit of model operations. In addition, the MDAS model allows for seamless integration with modern-day, widely available software such as Microsoft Access and Excel. Sediment, total iron, dissolved aluminum, pH, and fecal coliform bacteria were modeled using the MDAS.

9.2 Model Setup

Model setup consisted of configuring the following three separate MDAS models: iron/sediment, aluminum/pH, and fecal coliform bacteria.

9.2.1 General MDAS Configuration

Configuration of the MDAS model involved subdividing the TMDL watersheds into subwatershed modeling units connected by stream reaches. Physical characteristics of the subwatersheds, weather data, landuse information, continuous discharges, and stream data were used as input. Flow and water quality were continuously simulated on an hourly time-step.

The 4 TMDL watersheds were broken into 74 separate subwatershed units, based on the groupings of impaired streams shown in Figure 9-1. The TMDL watersheds were divided to allow evaluation of water quality and flow at pre-TMDL monitoring stations. This subdivision process also ensures a proper stream network configuration within the basin.
Figure 9-1. 4 TMDL watersheds and subwatershed delineation
9.2.2 Iron and Sediment Configuration

The modeled landuse categories contributing metals via precipitation and runoff include forest, pasture, cropland, wetlands, barren, residential/urban impervious, and residential/urban pervious. These sources were represented explicitly by consolidating existing NLCD 2001 landuse categories to create modeled landuse groupings. Several additional landuse categories were created to account for landuses either not included in the NLCD 2001 and/or representing recent land disturbance activities (i.e. abandoned mine lands, paved and unpaved roads,). The process of consolidating and updating the modeled landuses is explained in further detail in the Technical Report. Other sources, such as AML seeps identified by WVDEP’s source tracking efforts, were modeled as direct, continuous-flow sources in the model.

Sediment-producing landuses and bank erosion are sources of iron and aluminum because these metals are associated with sediment. Statistical analyses using pre-TMDL monitoring data collected in the TMDL watersheds were performed to establish the correlation between sediment and metals concentrations and to evaluate the spatial variability of this correlation. The results were then applied to the sediment from sediment-producing landuses and bank erosion to calculate the iron and aluminum loads delivered to the streams. Generation of sediment depends on the intensity of surface runoff. It also varies by landuse and the characteristics of the land. Sediment delivery paths modeled were surface runoff erosion and streambank erosion. Surface sediment sources were modeled using average sediment runoff concentrations by landuse. These concentrations were applied to the corresponding surface runoff flows. Bank erosion was modeled as a rate per unit area of submerged erodible area. Bank erosion will only happen after a critical flow is reached, and as the flow increases, so does the bank erosion yield. Sediment produced during bank erosion episodes is also dependent on the stability of the banks, as defined by the total bank stability score.

The relevant parameters in the bank-erosion algorithms are the threshold flow at which bank erosion starts to occur, and a coefficient for scour of the bank matrix soil for the reach. The threshold flow at which bank erosion starts to occur was estimated as the flow that occurs at bank-full depth. The coefficient for scour of the bank matrix soil was a direct function of the reach’s stability factor (S-value).

The MDAS bank erosion model takes into account stream flow and bank stability. The bank erosion rate per unit area was defined as a function of: bank flow volume above a specified threshold and the bank erodible area. Each stream segment had a flow threshold above which streambank erosion occurred. The bank scouring process is a power function dependent on high-flow events, defined as exceeding the flow threshold. The coefficient of scour for the bank soil was related to the Bank Stability Index. Streambank erosion was modeled as a unique sediment source independent of other upland-associated erosion sources.

The wetted perimeter and reach length represent ground area covered by water (Figure 9-2). The erodible wetted perimeter is equal to the difference between the actual wetted perimeter and wetted perimeter during threshold flow conditions. The bank erosion rate per unit area was multiplied by the erodible perimeter and the reach length to obtain an estimate of sediment mass eroded corresponding to the stream segment. The Technical Report provides more detailed discussions on the technical approaches used for sediment modeling.
9.2.3 Aluminum and pH Configuration

To derive the dissolved aluminum and pH TMDLs for the Youghiogheny River watershed, it was necessary to include additional MDAS modules capable of representing instream chemical reactions of several water quality components. With the atmospheric deposition module, MDAS is able to model acidity loading from dry and wet deposition. The Moisture Storage and Transport in Soil Layers (MSTLAY) module uses the fluxes that are computed from surface water, converts them into soil moisture and interlayer fluxes, and makes them usable for adsorption/desorption in solute transport calculations. MSTLAY estimates moisture storages in the four soil layers, in addition to the fluxes of moisture between the storages. To address water chemical and biogeochemical reactions affecting pH and dissolved aluminum, six modules were developed and added to the MDAS to better simulate pH levels: (1) the nitrogen soil (subsurface) transformation module, (2) the nitrogen stream (instream transformation) module, (3) the sulfate (subsurface) adsorption/desorption module, (4) the sulfate stream (aqueous chemical reaction) module, (5) the soil (subsurface) chemical reaction module, and (6) the stream (instream) chemical reaction module. The model selection process, modeling methodologies, and technical approaches are discussed further in the Technical Report.

AML seeps were modeled as direct, continuous-flow sources in the model. AML and other land-based sources were modeled using representative average concentrations for the surface, interflow and groundwater portions of the water budget.

9.2.4 Fecal Coliform Configuration

Modeled landuse categories contributing bacteria via precipitation and runoff include pasture, cropland, urban/residential pervious lands, urban/residential impervious lands, grassland and

Figure 9-2. Conceptual stream channel components in the bank erosion model
forest. Other sources, such as failing septic systems, straight pipes, and discharges from sewage treatment facilities, were modeled as direct, continuous-flow sources in the model.

The basis for the initial bacteria loading rates for landuses and direct sources is described in the Technical Report. The initial estimates were further refined during the model calibration. A variety of modeling tools were used to develop the fecal coliform bacteria TMDLs, including the MDAS, and a customized spreadsheet to determine the fecal loading from failing residential septic systems identified during source tracking efforts by the WVDEP. Section 7.2.1 describes the process of assigning flow and fecal coliform concentrations to failing septic systems.

9.3 Hydrology Calibration

Hydrology and water quality calibration were performed in sequence because water quality modeling is dependent on an accurate hydrology simulation. Typically, hydrology calibration involves a comparison of model results with instream flow observations from USGS flow gauging stations throughout the watershed. The MDAS hydrologic parameters for the Youghiogheny watershed model were derived from a previously constructed model for the entire Youghiogheny watershed that included both Maryland and West Virginia. Model output was calibrated to match data from USGS gauging station 03076500 on the Youghiogheny River at Friendsville, Maryland.

Hydrology calibration was based on observed data from that station and the landuses present in the watersheds from January 1, 2003 to October 31, 2006. Key considerations for hydrology calibration included the overall water balance, the high- and low-flow distribution, storm flows, and seasonal variation. The hydrology was validated for the time period of January 1, 1994 to October 31, 2006. As a starting point, many of the hydrology calibration parameters originated from the USGS Scientific Investigations Report 2005-5099 (Atkins, 2005). Final adjustments to model hydrology were based on flow measurements obtained during WVDEP’s pre-TMDL monitoring in the Youghiogheny River watershed. A detailed description of the hydrology calibration and a summary of the results and validation are presented in the Technical Report.

9.4 Water Quality Calibration

After the model was configured and calibrated for hydrology, the next step was to perform water quality calibration for the subject pollutants. The goal of water quality calibration was to refine model parameter values to reflect the unique characteristics of the watershed so that model output would predict field conditions as closely as possible. Both spatial and temporal aspects were evaluated through the calibration process.

The water quality was calibrated by comparing modeled versus observed pollutant concentrations. The water quality calibration consisted of executing the MDAS model, comparing the model results to available observations, and adjusting water quality parameters within reasonable ranges. Initial model parameters for the various pollutant parameters were derived from previous West Virginia TMDL studies, storm sampling efforts, and literature values. Available monitoring data in the watershed were identified and assessed for application to calibration. Monitoring stations with observations that represented a range of hydrologic
conditions, source types, and pollutants were selected. The time-period for water quality calibration was selected based on the availability of the observed data and their relevance to the current conditions in the watershed.

WVDEP also conducted storm monitoring on Shrewsbury Hollow in Kanawha State Forest, Kanawha County, West Virginia. The data gathered during this sampling episode was used in the calibration of fecal coliform and to enhance the representation of background conditions from undisturbed areas. The results of the storm sampling fecal coliform calibration are shown in Figure 9-3.

Figure 9-3. Shrewsbury Hollow fecal coliform observed data

The water quality parameters that were adjusted to obtain a calibrated model for sediment were the sediment concentrations by landuse, and the magnitude of the coefficient of scour for bank-erosion. Calibration parameters that were relevant for the land-based sediment calibration were the sediment concentrations (in mg/L) for runoff, interflow, and groundwater. These concentrations were defined for each modeled landuse. Initial values for these parameters were based on available landuse-specific storm-sampling monitoring data. Values were adjusted so that the model’s suspended solids output closely matched observed instream data in watersheds with predominately one type of source.
9.5 Modeling Technique for Biological Impairment with Sedimentation Stressor

The SI process discussed in Section 4 indicated a need to reduce the contribution of excess sediment to some of the biologically impaired streams. Initially, a “reference watershed” TMDL development approach was pursued. The approach was based on selecting a non-impaired watershed that shares similar landuse, ecoregion, and geomorphologic characteristics with the impaired watershed. Stream conditions in the reference watershed are assumed to be representative of the conditions needed for the impaired streams to attain their designated uses, and the normalized loading associated with the reference stream is used as the TMDL endpoint for the impaired streams. Given these parameters and a non-impaired WVSCI score, Little Laurel Run (WV-MY-169-A-3) was selected as the reference watershed. The location of the reference watershed is shown in Figure 4-2.

All of the sediment-impaired streams exhibited impairments pursuant to total iron water quality criteria. Upon finalization of modeling based on the reference watershed approach, it was determined that sediment reductions necessary to ensure compliance with iron criteria are greater than those necessary to correct the biological impairments associated with sediment. As such, the iron TMDLs presented for the subject waters are appropriate surrogates for necessary sediment TMDLs. For affected streams, Table 9-1 contrasts the sediment reductions necessary to attain iron criteria with those needed to resolve biological impairment under the reference watershed approach. Please refer to the Technical Report for details regarding the reference watershed approach.

Table 9-1. Sediment loadings using different modeling approaches

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>Stream Code</th>
<th>Allocated Sediment Load Iron TMDL (tons/yr)</th>
<th>Allocated Sediment Load Reference Approach (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169</td>
<td>363</td>
<td>471</td>
</tr>
<tr>
<td>Wardwell Run</td>
<td>WV-MY-169-I-3</td>
<td>59</td>
<td>76</td>
</tr>
</tbody>
</table>

9.6 Allocation Analysis

As explained in Section 2, a TMDL is composed of the sum of individual WLAs for point sources, LAs for nonpoint sources, and natural background levels. In addition, the TMDL must include a MOS, implicitly or explicitly, that accounts for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. TMDLs can be expressed in terms of mass per time or other appropriate units. Conceptually, this definition is denoted by the equation:

\[
\text{TMDL} = \text{sum of WLAs} + \text{sum of LAs} + \text{MOS}
\]

To develop the TMDLs for each of the impairments listed in Table 3-3 of this report, the following approach was taken:

- Define TMDL endpoints
• Simulate baseline conditions
• Assess source loading alternatives
• Determine the TMDL and source allocations

9.6.1 TMDL Endpoints
TMDL endpoints represent the water quality targets used to quantify TMDLs and their individual components. In general, West Virginia’s numeric water quality criteria for the subject pollutants and an explicit five percent MOS were used to identify endpoints for TMDL development.

The five percent explicit MOS was used to counter uncertainty in the modeling process. Long-term water quality monitoring data were used for model calibration. Although these data represented actual conditions, they were not of a continuous time series and might not have captured the full range of instream conditions that occurred during the simulation period. The explicit five percent MOS also accounts for those cases where monitoring might not have captured the full range of instream conditions. The TMDL endpoints for the various criteria are displayed in Table 9-2.

Table 9-2. TMDL endpoints

<table>
<thead>
<tr>
<th>Water Quality Criterion</th>
<th>Designated Use</th>
<th>Criterion Value</th>
<th>TMDL Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Iron</td>
<td>Aquatic Life, warmwater fisheries</td>
<td>1.5 mg/L (4-day average)</td>
<td>1.425 mg/L (4-day average)</td>
</tr>
<tr>
<td>Total Iron</td>
<td>Aquatic Life, troutwaters</td>
<td>0.5 mg/L (4-day average)</td>
<td>0.475 mg/L (4-day average)</td>
</tr>
<tr>
<td>Dissolved Aluminum</td>
<td>Aquatic Life, warmwater fisheries</td>
<td>0.75 mg/L (1-hour average)</td>
<td>0.7125 mg/L (1-hour average)</td>
</tr>
<tr>
<td>Dissolved Aluminum</td>
<td>Aquatic Life, troutwaters</td>
<td>0.087 mg/L (4-day average)</td>
<td>0.0827 mg/L (4-day average)</td>
</tr>
<tr>
<td>pH</td>
<td>Aquatic Life</td>
<td>6.50 Standard Units (Minimum)</td>
<td>6.52 Standard Units (Minimum)</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>Water Contact Recreation and Public Water Supply</td>
<td>200 counts / 100 mL (Monthly Geometric Mean)</td>
<td>190 counts / 100 mL (Monthly Geometric Mean)</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>Water Contact Recreation and Public Water Supply</td>
<td>400 counts / 100 mL (Daily, 10% exceedance)</td>
<td>380 counts / 100 mL (Daily, 10% exceedance)</td>
</tr>
</tbody>
</table>

TMDLs are presented as average daily loads that were developed to meet TMDL endpoints under a range of conditions observed throughout the year. For most pollutants, analysis of available data indicated that critical conditions occur during both high- and low-flow events. To appropriately address the low- and high-flow critical conditions, the TMDLs were developed using continuous simulation (modeling over a period of several years that captured precipitation extremes), which inherently considers seasonal hydrologic and source loading variability.

The West Virginia water quality criterion for pH calls for pH to be maintained between 6.0 and 9.0 standard units at all times. Laurel Run and Buffalo Run exit West Virginia and enter
Maryland where water quality standards require pH to be within 6.5 and 8.5 standard units at all times. Because the Maryland criterion is more stringent than the West Virginia criterion, the pH TMDLs for Laurel Run and Buffalo Run are based upon the Maryland criterion with a 5 percent explicit margin of safety. This is necessary to ensure protection of Maryland water quality standards as those streams cross the state border.

With respect to AMD, pH is not a good indicator of the acidity in a waterbody and can be a misleading characteristic. Water with near-neutral pH (~ 7) but containing elevated concentrations of dissolved ferrous (Fe^{2+}) ions can become acidic after oxidation and precipitation of the iron (PADEP, 2000). Therefore, a more practical approach to meeting the water quality criteria for pH is to use the concentration of metal ions as a surrogate for pH. It was assumed that reducing instream metals (iron and aluminum) concentrations to meet water quality criteria (or TMDL endpoints) while accounting for acidic atmospheric deposition via net alkalinity addition would result in meeting the water quality standard for pH. This assumption was verified by executing MDAS under TMDL conditions (where prescribed metals reductions and alkalinity additions are achieved) and comparing simulated results at all subwatershed outlets to the pH criteria. The TMDLs for the pH-impaired streams are presented as the annual average net acidity load present under TMDL conditions at the mouth of each pH impaired stream. Additional details regarding the pH modeling approach are provided in the Technical Report.

9.6.2 Baseline Conditions and Source Loading Alternatives

The calibrated model provides the basis for performing the allocation analysis. The first step is to simulate baseline conditions, which represent existing nonpoint source loadings and point sources loadings at permit limits. Baseline conditions allow for an evaluation of instream water quality under the highest expected loading conditions.

Baseline Conditions for MDAS

The MDAS model was run for baseline conditions using hourly precipitation data for a representative six year simulation period (January 1, 1998 through December 31, 2003). The precipitation experienced over this period was applied to the landuses and pollutant sources as they existed at the time of TMDL development. Predicted instream concentrations were compared directly with the TMDL endpoints. This comparison allowed for the evaluation of the magnitude and frequency of exceedances under a range of hydrologic and environmental conditions, including dry periods, wet periods, and average periods. Figure 9-4 presents the annual rainfall totals for the years 1990 through 2006 at the Terra Alta weather station in West Virginia. The years 1998 to 2004 are highlighted to indicate the range of precipitation conditions used for TMDL development in the Youghiogheny River watershed.
Active mining point sources and bond forfeiture sites were not present in the metals impaired modeled watersheds, therefore none were represented in the model.

AML seeps identified were represented as continuous discharges, using the observed flows and pollutant concentrations identified by WVDEP source tracking.

Certain non-mining discharges (stormwater associated with non-construction, industrial activity) were represented using precipitation, drainage area, and the stormwater benchmark iron value of 1.0 mg/L.

A maximum area of 1.0 percent of the total subwatershed area was allotted for concurrent construction activity under the Construction Stormwater General Permit. Baseline loadings were based upon precipitation and runoff and an assumption that proper installation and maintenance of required BMPs will achieve a TSS benchmark value of 100 mg/L.

Sediment producing nonpoint source and background loadings were represented using precipitation, drainage area, and the iron loading associated with their predicted sediment contributions.

Effluents from sewage treatment plants were represented under baseline conditions as continuous discharges, using the design flow for each facility and the monthly geometric mean fecal coliform effluent limitation of 200 counts/100 mL. CSO, SSO and MS4 sources were not present in the fecal coliform impaired modeled watersheds; therefore none were represented in the model.
Source Loading Alternatives
Simulating baseline conditions allowed for the evaluation of each stream’s response to variations in source contributions under a variety of hydrologic conditions. This sensitivity analysis gave insight into the dominant sources and the mechanisms by which potential decreases in loads would affect instream pollutant concentrations. The loading contributions from the various existing sources were individually adjusted; the modeled instream concentrations were then evaluated.

Multiple allocation scenarios were run for the impaired waterbodies. Successful scenarios achieved the TMDL endpoints under all flow conditions throughout the modeling period. The averaging period and allowable exceedance frequency associated with West Virginia water quality criteria were considered in these assessments. In general, loads contributed by sources that had the greatest impact on instream concentrations were reduced first. If additional load reductions were required to meet the TMDL endpoints, less significant source contributions were subsequently reduced. Figure 9-5 shows an example of model output for a baseline condition and a successful TMDL scenario.

Figure 9-5. Example of baseline and TMDL conditions for total iron

9.7 TMDLs and Source Allocations

9.7.1 Total Iron TMDLs

Source allocations were developed for all modeled subwatersheds contributing to the iron impaired streams of the Youghiogheny River watershed. A top-down methodology was followed to allocate loads to sources. Headwaters were analyzed first because their loading affects
downstream water quality. Loading contributions were reduced from applicable sources in impaired headwaters until criteria were attained at the subwatershed outlet. The loading contributions of unimpaired headwaters and the reduced loadings for impaired headwaters were then routed through downstream waterbodies. Using this method, contributions from all sources were weighted equitably and ensured cumulative load endpoints were met at the most downstream subwatershed for each impaired stream. Reductions in sources affecting impaired headwaters ultimately led to improvements downstream and effectively decreased necessary loading reductions from downstream sources. Nonpoint source reductions did not result in allocated loadings less than natural conditions. Permitted source reductions did not result in allocated loadings to a permittee that would be more stringent than water quality criteria. The following methodology was used when allocating to iron sources.

- For subwatersheds where iron impairments are associated with elevated sediment loadings and where streambank erosion was determined to be a significant source of sediment, the loading from streambank erosion was first reduced to the loading characteristics of the reference stream.

- For watersheds with AMLs and/or sediment-contributing nonpoint sources, AML loads were reduced first until instream water quality criteria were met or until conditions were no less than those of undisturbed forest. If further reductions were required, the loads from sediment-contributing nonpoint sources were reduced until water quality criteria were met.

Wasteload Allocations (WLAs)
WLAs were developed for all point sources permitted to discharge iron under a NPDES permit. Because of the established relationship between iron and TSS, iron WLAs are also provided for facilities with stormwater discharges that are regulated under NPDES permits that contain TSS and/or iron effluent limitations or benchmarks values, and facilities registered under the General NPDES permit for construction stormwater.

Construction Stormwater
Specific WLAs for future activity under the Construction Stormwater General Permit are provided at the subwatershed scale and are described in Section 11.0. An allocation of 1.0 percent of subwatershed area was provided with loadings based upon precipitation and runoff and an assumption that proper installation and maintenance of required BMPs will achieve a TSS benchmark value of 100 mg/L. In all instances, the existing level of activity under the Construction Stormwater General Permit conforms to the subwatershed allocations. As such, specific WLAs for existing registrations under the General Permit are not presented.

Load Allocations (LAs)
LAs are made for the dominant nonpoint source categories as follows:

- AML: loading from abandoned mine lands, including loads from disturbed land, highwalls, deep mine discharges and seeps
Sediment sources: loading associated with sediment contributions from barren land, residential/urban/road landuses and streambank erosion

Background and other nonpoint sources: loading from undisturbed forest and grasslands, and agricultural landuses (loadings associated with this category were represented but not reduced)

Non-attainment of Trout water Iron Criterion and Phased TMDL Approach

Troutwater iron TMDLs are presented for Snowy Creek and North Branch Snowy Creek. Implementation of the described allocation methodology does not assure complete attainment of the chronic aquatic life protection, troutwater iron criterion. The unattainable iron criterion is a four-day average concentration equal to 0.5 mg/L total iron that is not to be exceeded more than once every three years. The relatively high iron content of the soils in the watershed is the primary influencing factor. Initial allocation scenarios for the subject waters included the following provisions:

- All point sources and continuous flow nonpoint sources were set at the value of the troutwater criterion
- All streambank stability ratings were set to the best measured condition in the watershed
- All land disturbing nonpoint sources were reduced to the forest background loading
- No allowance for new activity under the Construction Stormwater General Permit was provided

Even under those stringent and unachievable allocation scenarios, modeling output did not ensure criterion attainment over the design period of precipitation. Non-attainment was predicted in response to extreme precipitation events or a series of significant storms that elevate instream TSS and iron concentrations. The magnitudes of the predicted exceedances under the initial allocation scenarios were not extreme, but exceedances were predicted much more often than the one per three year frequency prescribed by the criterion. Criterion attainment would require pollutant reductions from existing sources that are well beyond practical levels, coupled with significant reductions of undisturbed upland and streambank background loadings, and no construction stormwater allowances.

To address this situation, phased implementation of the TMDLs is proposed, under which the source allocations necessary to universally achieve the iron criterion for warmwater fisheries (1.5 mg/L, 4-day average, once per three years average exceedance frequency) are implemented concurrently with additional study of the situation.

In that regard, WVDEP has initiated planning of a special monitoring effort for minimally impacted and documented viable troutwaters, upon which modeling refinements and/or alternative criterion decision-making may be based. Initial plans envision intensified water quality monitoring targeted to varying stream flows, storm event monitoring, high-resolution stream channel configuration and bank vegetative condition assessments, and intensified landuse
characterization. Monitoring and assessment results will be used to refine model calibration and an “existing condition” model run will be executed. Fieldwork was initiated in calendar year 2008 and is continuing. If an alternative criterion appears warranted, necessary revisions to Water Quality Standards will be pursued in the next available triennial review process. If the new information indicates that existing criterion can be attained through modeling refinements and practical allocations, then TMDL modifications will be pursued. For the subject troutwaters, the iron TMDLs and allocations are presented under the following methodology:

- All point source and continuous flow nonpoint source allocations are set at 1.5 mg/L
- All land disturbance activities are reduced to loadings slightly greater than the background forest loading
- The iron loading associated with sediment from streambank erosion is reduced to levels commensurate with those associated with those observed in the reference stream
- Allowance for new construction activity is provided such that 1.0 % of the area of each subwatershed is reserved for site registrations under the Construction Stormwater General Permit

This allocation methodology results in universal attainment of the warmwater fishery iron criterion at the pour points of all subwatersheds within the impaired troutwaters.

Tables 9-3 and 9-4 display calculations of the iron TMDLs that would result in attainment of the currently effective total iron criterion for impaired trout waters. To derive the displayed values, it was necessary to reduce iron loading from undisturbed forest/grasslands and existing precipitation-induced upland non-point source categories 20 to 75 % lower than the background loading from undisturbed forest, to universally reduce streambank erosion loads to those commensurate with the best observed streambank condition in the Youghiogheny River watershed, and to eliminate all future growth provisions for registrations under the Construction Stormwater General Permit.
Table 9-3. Iron TMDLs (Average Daily) Under Current Trout Water Criterion

<table>
<thead>
<tr>
<th>TMDL Watershed</th>
<th>Stream Code</th>
<th>Stream Name</th>
<th>Metal</th>
<th>LA (lbs/day)</th>
<th>WLA (lbs/day)</th>
<th>MOS (lbs/day)</th>
<th>TMDL (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169</td>
<td>Snowy Creek</td>
<td>Iron</td>
<td>72</td>
<td>NA</td>
<td>4</td>
<td>76</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-I</td>
<td>North Branch/Snowy Creek</td>
<td>Iron</td>
<td>33</td>
<td>NA</td>
<td>2</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 9-4. Iron TMDLs (Average Annual) Under Current Trout Water Criterion

<table>
<thead>
<tr>
<th>TMDL Watershed</th>
<th>Stream Code</th>
<th>Stream Name</th>
<th>Metal</th>
<th>LA (lbs/yr)</th>
<th>WLA (lbs/yr)</th>
<th>MOS (lbs/yr)</th>
<th>TMDL (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169</td>
<td>Snowy Creek</td>
<td>Iron</td>
<td>26,429</td>
<td>18</td>
<td>1,392</td>
<td>27,839</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-I</td>
<td>North Branch/Snowy Creek</td>
<td>Iron</td>
<td>11,933</td>
<td>NA</td>
<td>628</td>
<td>12,561</td>
</tr>
</tbody>
</table>
9.7.2 Dissolved Aluminum and pH TMDLs

Source allocations were developed for all modeled subwatersheds contributing to the dissolved aluminum and/or pH impaired streams of the Youghiogheny River watershed. Sources of total iron were reduced prior to total aluminum reduction because existing instream iron concentrations can significantly reduce pH and consequently increase dissolved aluminum concentrations. If the dissolved aluminum and/or pH TMDL endpoint was not attained after source reductions to iron, the following methodology was used when allocating aluminum loadings and/or prescribing acidity reductions:

- For subwatersheds with acidic atmospheric deposition sources and low watershed buffering capacity and no AML sources, acidity load reductions were prescribed (via alkalinity addition) to the extent necessary to attain pH criteria at the subwatershed outlet.

- For subwatersheds with historical mining sources present, the predicted acid loads from atmospheric deposition were first offset by alkalinity addition then the total aluminum loading from AMLs were reduced to the extent necessary to attain dissolved aluminum water quality criteria.

Because no aluminum point sources are present in the subject watersheds, wasteload allocations are not applicable. In addition to the AML nonpoint source category, load allocations are provided to account for the sediment-based aluminum contributions from barren land, agricultural landuses, residential/urban/road landuses, and undisturbed forest and grasslands. The load allocations do not represent aluminum loading reductions from those landuses.

All sources were represented and provided allocations in terms of the total aluminum loadings that are necessary to attain the dissolved aluminum water quality criteria.

The reductions of total aluminum loading from land-based sources, coupled with the mitigation of acid precipitation impacts by alkalinity addition, are predicted to result in attainment of both dissolved aluminum and pH water quality criteria at all evaluated locations in the pH and dissolved aluminum impaired streams.

9.7.3 Fecal Coliform Bacteria TMDLs

TMDLs and source allocations were developed for impaired steams and their tributaries on a subwatershed basis throughout the watershed. As described in previously, a top-down methodology was followed to develop these TMDLs and allocate loads to sources.

The following general methodology was used when allocating loads to fecal coliform bacteria sources:

- The effluents from all NPDES permitted sewage treatment plants were set at the permit limit (200 counts/100 mL monthly geometric mean)
• Because West Virginia Bureau for Public Health regulations prohibit the discharge of raw sewage into surface waters, all illicit discharges of human waste (from failing septic systems and straight pipes) were reduced by 100 percent in the model.

• If further reduction was necessary non-point source loadings from agricultural lands and residential areas were subsequently reduced until in-stream water quality criteria were met.

Wasteload Allocations (WLAs)

WLAs were developed for all facilities permitted to discharge fecal coliform bacteria, as described below.

Sewage Treatment Plant Effluents

The fecal coliform effluent limitations for NPDES permitted sewage treatment plants are more stringent than water quality criteria; therefore, all effluent discharges from sewage treatment facilities were given wasteload allocations equal to existing monthly fecal coliform effluent limitations of 200 counts/100 mL.

Load Allocations (LAs)

Fecal coliform LAs are assigned to the following source categories:

- Pasture/Cropland
- On-site Sewage Systems — loading from all illicit discharges of human waste (including failing septic systems and straight pipes)
- Residential — loading associated with urban/residential runoff
- Background and Other Nonpoint Sources — loading associated with wildlife sources from all other landuses (contributions/loadings from wildlife sources were not reduced)

9.7.4 Seasonal Variation

Seasonal variation was considered in the formulation of the modeling analysis. Continuous simulation (modeling over a period of several years that captured precipitation extremes) inherently considers seasonal hydrologic and source loading variability. The metals and fecal coliform concentrations simulated on a daily time step by the model were compared with TMDL endpoints. Allocations that met these endpoints throughout the modeling period were developed.

9.7.5 Critical Conditions

A critical condition represents a scenario where water quality criteria are most susceptible to violation. Analysis of water quality data for the impaired streams addressed in this effort shows high pollutant concentrations during both high- and low-flow thereby precluding selection of a single critical condition. Both high-flow and low-flow periods were taken into account during
TMDL development by using a long period of weather data that represented wet, dry, and average flow periods.

Nonpoint source loading is typically precipitation-driven and impacts tend to occur during wet weather and high surface runoff. During dry periods little or no land-based runoff occurs, and elevated instream pollutant levels may be due to point sources (Novotny and Olem, 1994). Also, failing on-site sewage systems and AML seeps (both categorized as nonpoint sources but represented as continuous flow discharges) often have an associated low-flow critical condition, particularly where such sources are located on small receiving waters.

9.7.6 TMDL Presentation

The TMDLs for all impairments are shown in Section 10.0 of this report. The TMDLs for total iron and dissolved aluminum are presented as average daily loads, in pounds per day. The dissolved aluminum TMDLs are based on a dissolved aluminum TMDL endpoint; however, components and allocations are provided in the form of total metal. The TMDLs for fecal coliform bacteria are presented in average number of colonies per day. All TMDLs were developed to meet TMDL endpoints under a range of conditions observed over the modeling period. TMDLs and their components are also presented in the allocation spreadsheets associated with this report. The filterable spreadsheets also display detailed source allocations and include multiple display formats that allow comparison of pollutant loadings among categories and facilitate implementation.

The iron WLAs for Construction Stormwater General Permit registrations are presented as both annual average loads, for comparison with other sources, and equivalent area registered under the permit. The registered area is the operable allocation.

The iron WLAs for non construction sectors registered under the Multi Sector Stormwater Permit are presented both as annual average loads, for comparison with other pollutant sources, and equivalent allocation concentrations. The prescribed concentrations are operable, and because they are equivalent to existing effluent limitations/benchmark values, they are to be directly implemented.

The fecal coliform bacteria WLAs for sewage treatment plant effluents are presented both as annual average loads, for comparison with other pollutant sources, and equivalent allocation concentrations. The prescribed concentrations are the operable allocations for NPDES permit implementation.

The pH TMDLs are presented in terms of annual net acidity at the outlet of each impaired stream. The net acidity loadings under TMDL conditions reflect total aluminum reductions by land-based sources and the mitigation of acid precipitation impacts through alkalinity addition.
10.0 TMDL RESULTS

Table 10-1. Dissolved Aluminum TMDLs

<table>
<thead>
<tr>
<th>TMDL Watershed</th>
<th>Stream Code</th>
<th>Stream Name</th>
<th>Parameter</th>
<th>Load Allocation (lbs total aluminum/day)</th>
<th>Wasteload Allocation (lbs total aluminum/day)</th>
<th>Margin of Safety (lbs total aluminum/day)</th>
<th>TMDL (lbs total aluminum/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-A</td>
<td>Laurel Run</td>
<td>Aluminum</td>
<td>19.3</td>
<td>NA</td>
<td>1.0</td>
<td>20.4</td>
</tr>
</tbody>
</table>

Note: although the WV standards are presented in dissolved aluminum concentrations, the TMDLs are presented in pounds of total aluminum per day

Table 10-2. Total Iron TMDLs

<table>
<thead>
<tr>
<th>TMDL Watershed</th>
<th>Stream Code</th>
<th>Stream Name</th>
<th>Parameter</th>
<th>Load Allocation (lbs/day)</th>
<th>Wasteload Allocation (lbs/day)</th>
<th>Margin of Safety (lbs/day)</th>
<th>TMDL (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-A</td>
<td>Laurel Run</td>
<td>Iron</td>
<td>81.5</td>
<td>6.0</td>
<td>4.6</td>
<td>92.1</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169</td>
<td>Snowy Creek</td>
<td>Iron</td>
<td>152.2</td>
<td>11.8</td>
<td>8.6</td>
<td>172.6</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-I</td>
<td>North Branch/Snowy Creek</td>
<td>Iron</td>
<td>65.2</td>
<td>5.4</td>
<td>3.7</td>
<td>74.3</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-I-3</td>
<td>Wardwell Run</td>
<td>Iron</td>
<td>13.9</td>
<td>1.9</td>
<td>0.8</td>
<td>16.7</td>
</tr>
</tbody>
</table>
Table 10-3. pH TMDLs

<table>
<thead>
<tr>
<th>Major Watershed</th>
<th>Stream Code</th>
<th>Stream Name</th>
<th>Parameter</th>
<th>LA Average Annual Net Acidity Load (ton/yr)</th>
<th>WLA Average Annual Net Acidity Load (ton/yr)</th>
<th>MOS Average Annual Net Acidity Load (ton/yr)</th>
<th>TMDL Average Annual Net Acidity Load (ton/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo Run</td>
<td>WV-MY-123</td>
<td>Buffalo Run</td>
<td>pH</td>
<td>0.89</td>
<td>NA</td>
<td>0.05</td>
<td>0.94</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-A</td>
<td>Laurel Run</td>
<td>pH</td>
<td>5.63</td>
<td>NA</td>
<td>0.30</td>
<td>5.93</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-A-3</td>
<td>Little Laurel Run</td>
<td>pH</td>
<td>1.38</td>
<td>NA</td>
<td>0.07</td>
<td>1.46</td>
</tr>
</tbody>
</table>
Table 10-4. Fecal coliform bacteria TMDLs

<table>
<thead>
<tr>
<th>TMDL Watershed</th>
<th>Stream Code</th>
<th>Stream Name</th>
<th>Parameter</th>
<th>Load Allocation (counts/day)</th>
<th>Wasteload Allocation (counts/day)</th>
<th>Margin of Safety (counts/day)</th>
<th>TMDL (counts/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo Run</td>
<td>WV-MY-123</td>
<td>Buffalo Run</td>
<td>Fecal coliform</td>
<td>1.55E+10</td>
<td>NA</td>
<td>8.17E+08</td>
<td>1.63E+10</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169</td>
<td>Snowy Creek</td>
<td>Fecal coliform</td>
<td>1.55E+11</td>
<td>3.03E+09</td>
<td>8.33E+09</td>
<td>1.67E+11</td>
</tr>
<tr>
<td></td>
<td>WV-MY-169-I</td>
<td>North Branch/Snowy Creek</td>
<td>Fecal coliform</td>
<td>7.56E+10</td>
<td>1.14E+09</td>
<td>4.04E+09</td>
<td>8.08E+10</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-I-3</td>
<td>Wardwell Run</td>
<td>Fecal coliform</td>
<td>3.48E+10</td>
<td>1.14E+09</td>
<td>1.89E+09</td>
<td>3.78E+10</td>
</tr>
<tr>
<td>Snowy Creek</td>
<td>WV-MY-169-J</td>
<td>South Branch/Snowy Creek</td>
<td>Fecal coliform</td>
<td>3.47E+10</td>
<td>NA</td>
<td>1.82E+09</td>
<td>3.65E+10</td>
</tr>
<tr>
<td>Rhine Creek</td>
<td>WV-MY-179</td>
<td>Rhine Creek</td>
<td>Fecal coliform</td>
<td>5.69E+10</td>
<td>2.42E+07</td>
<td>3.00E+09</td>
<td>5.99E+10</td>
</tr>
<tr>
<td>Maple Run</td>
<td>WV-MY-184</td>
<td>Maple Run</td>
<td>Fecal coliform</td>
<td>6.13E+10</td>
<td>NA</td>
<td>3.23E+09</td>
<td>6.45E+10</td>
</tr>
<tr>
<td>Maple Run</td>
<td>WV-MY-184-F</td>
<td>UNT/Maple Run RM 5.22</td>
<td>Fecal coliform</td>
<td>1.85E+10</td>
<td>NA</td>
<td>9.74E+08</td>
<td>1.95E+10</td>
</tr>
</tbody>
</table>

NA = not applicable; UNT = unnamed tributary; RM = river mile.

Scientific notation is a method of writing or displaying numbers in terms of a decimal number between 1 and 10 multiplied by a power of 10. The scientific notation of 10,492, for example, is 1.0492×10^4.
Table 10-5. Biological TMDLs

<table>
<thead>
<tr>
<th>Stream Name (Code)</th>
<th>Biological Stressor</th>
<th>Parameter</th>
<th>Load Allocation</th>
<th>Wasteload Allocation</th>
<th>Margin of Safety</th>
<th>TMDL</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowy Creek (WV-MY-169)</td>
<td>Sedimentation</td>
<td>Total Iron</td>
<td>152.2</td>
<td>11.8</td>
<td>8.6</td>
<td>172.6</td>
<td>lbs/day</td>
</tr>
<tr>
<td></td>
<td>Organic Enrichment</td>
<td>Fecal Coliform</td>
<td>1.55E+11</td>
<td>3.03E+09</td>
<td>8.33E+09</td>
<td>1.67E+11</td>
<td>counts/day</td>
</tr>
<tr>
<td>Wardwell Run (WV-MY-169-I-3)</td>
<td>Organic Enrichment</td>
<td>Fecal Coliform</td>
<td>3.48E+10</td>
<td>1.14E+09</td>
<td>1.89E+09</td>
<td>3.78E+10</td>
<td>counts/day</td>
</tr>
<tr>
<td></td>
<td>Sedimentation</td>
<td>Total Iron</td>
<td>13.9</td>
<td>1.9</td>
<td>0.8</td>
<td>16.7</td>
<td>lbs/day</td>
</tr>
<tr>
<td>Maple Run (WV-MY-184)</td>
<td>Organic Enrichment</td>
<td>Fecal Coliform</td>
<td>6.13E+10</td>
<td>NA</td>
<td>3.23E+09</td>
<td>6.45E+10</td>
<td>counts/day</td>
</tr>
</tbody>
</table>

NA = not applicable; UNT = unnamed tributary.

"Scientific notation" is a method of writing or displaying numbers in terms of a decimal number between 1 and 10 multiplied by a power of 10. The scientific notation of 10,492, for example, is 1.0492×10^4.
11.0 FUTURE GROWTH

11.1 Iron and Aluminum

With the exception of allowances provided for Construction Stormwater General Permit registrations discussed below, this TMDL does not include specific future growth allocations for iron and aluminum. However, the absence of specific future growth allocations does not prohibit the permitting of new or expanded activities in the watersheds of streams for which metals TMDLs have been developed. Pursuant to 40 CFR 122.44(d)(1)(vii)(B), effluent limits must be “consistent with the assumptions and requirements of any available wasteload allocation for the discharge....” In addition, the federal regulations generally prohibit issuance of a permit to a new discharger “if the discharge from its construction or operation will cause or contribute to the violation of water quality standards.” A discharge permit for a new discharger could be issued under the following scenarios:

- A new facility could be permitted anywhere in the watershed, provided that effluent limitations are based on the achievement of water quality standards at end-of-pipe for the pollutants of concern in the TMDL.

- NPDES permitting rules mandate effluent limitations for metals to be prescribed in the total recoverable form. West Virginia water quality criteria for iron are in total recoverable form and may be directly implemented. Because aluminum water quality criteria are in dissolved form, a dissolved/total pollutant translator is needed to determine effluent limitations. A new facility could be permitted in the watershed of a dissolved aluminum-impaired stream if total aluminum effluent limitations are based on the dissolved aluminum, chronic, aquatic life protection criterion and a dissolved/total aluminum translator equal to 1.0.

- In regard to future mining point sources, the alternative precipitation provisions of 40 CFR 434 that suspend applicability of TSS limitations cannot be applied in iron TMDL watersheds.

- Remining (under an NPDES permit) could occur without a specific allocation to the new permittee, provided that the requirements of existing State remining regulations are met. Remining activities will not worsen water quality and in some instances may result in improved water quality in abandoned mining areas.

- Most traditional, non-mining point source discharges are assigned technology-based TSS effluent limitations that would not cause biological impairment. For example, NPDES permits for sewage treatment and industrial manufacturing facilities contain monthly average TSS effluent limitations between 30 and 100 mg/L. New point sources may be permitted in the watersheds of biologically impaired streams for which sedimentation has been identified as a significant stressor with the implementation of applicable technology based TSS requirements. If iron or aluminum is identified as a pollutant of concern in a process wastewater discharge from a new, non-mining activity, then the discharge can be
permitted if effluent limitations are based on the achievement of water quality standards at end-of-pipe for the pollutants of concern.

- Subwatershed-specific future growth allowances have been provided for site registrations under the Construction Stormwater General Permit. In general, the successful TMDL allocation provides 1.0 percent of modeled subwatershed area to be registered under the general permit at any point in time. Furthermore, the CSW Future Growth table in the metals allocation spreadsheet provides a cumulative area allowance for the immediate subwatershed and all upstream contributing subwatersheds. Projects in excess of the acreage provided for the immediate subwatershed may also be registered under the general permit, provided that the total registered disturbed area in the immediate subwatershed and all upstream subwatersheds is less than the cumulative area provided. Furthermore, larger projects may be permitted in phases that adhere to the area allowances or by implementing controls beyond those afforded by the general permit. Larger areas may be permitted if it can be demonstrated that more stringent controls will result in a loading condition commensurate with that afforded by the management practices associated with the general permit.

11.2 Fecal Coliform Bacteria

Specific fecal coliform bacteria future growth allocations are not prescribed. The absence of specific future growth allocations does not prohibit new development in the watersheds of streams for which fecal coliform bacteria TMDLs have been developed, or preclude the permitting of new sewage treatment facilities.

In many cases, the implementation of the TMDLs will consist of providing public sewer service to unsewered areas. The NPDES permitting procedures for sewage treatment facilities include technology-based fecal coliform effluent limitations that are more stringent than applicable water quality criteria. Therefore, a new sewage treatment facility may be permitted anywhere in the watershed, provided that the permit includes monthly geometric mean and maximum daily fecal coliform limitations of 200 counts/100 mL and 400 counts/100 mL, respectively. Furthermore, WVDEP will not authorize construction of combined collection systems nor permit overflows from newly constructed collection systems.

12.0 PUBLIC PARTICIPATION

12.1 Public Meetings

Informational public meetings were held on May 24, 2005 and August 26, 2008 at West Virginia University (WVU) Evansdale Campus in Morgantown, West Virginia. The May 24th meeting occurred prior to pre-TMDL stream monitoring and pollutant source tracking and included a general TMDL overview and a presentation of planned monitoring and data gathering activities. The August 26th meeting occurred prior to allocation of pollutant loads and included a presentation of planned allocation strategies. A public meeting was held to present the draft TMDLs on February 11, 2009 at Blackwater Falls State Park in Davis, West Virginia.
meeting began at 6:30 PM and provided information to stakeholders intended to facilitate comments on the draft TMDLs.

12.2 Public Notice and Public Comment Period

The availability of draft TMDLs was advertised in various local newspapers between January 28, 2009 and February 4, 2009. Interested parties were invited to submit comments during the public comment period, which began on February 2, 2009 and ended on March 3, 2009. The electronic documents are available on the WVDEP’s internet site at http://www.wvdep.org/wvtmdl.

12.3 Response Summary

The Maryland Department of the Environment (MDE) provided written comments in response to WVDEP’s advertisement of the draft TMDLs. The comments were carefully considered and resulted in revisions of pH TMDLs for Laurel Run and Buffalo Run. Copies of MDE’s comment letter and the WVDEP response are provided below.
Maryland’s TMDL Development Program has reviewed the documentation for the “Total Maximum Daily Loads for Selected Stream in the Youghiogheny River Watershed, West Virginia”. The comments our staff have provided are below.

1. It is unclear how these TMDLs will be meeting water quality standards (WQS) at the Maryland line, particularly for Laurel Run and Buffalo Run. Maryland’s WQS for pH is to be met instantaneously in the range of 6.5-8.5. Maryland’s WQS for turbidity is (a) Turbidity may not exceed levels detrimental to aquatic life and (b) Turbidity in the surface water resulting from any discharge may not exceed 150 units at any time or 50 units as a monthly average. Units shall be measured in Nephelometer Turbidity Units. For bacteria, the Maryland WQS for non-tidal free-flowing waters is a steady-state geometric mean of 33 Enterococci MPN/100 mL or 126 E. coli MPN/100 ml.

2. What are the sediment baseline loads for the sediment TMDL and the percent reductions required from the baseline to meet the water quality goals of the TMDL?

3. Maryland has completed sediment TMDL for the Youghiogheny River but there is no mention of it in your documentation. How does the WV TMDL support this?

Maryland appreciates the opportunity to comment on this document. If you need any references or have clarifying questions, please contact feel free to contact me at (410) 537-3937 or mchatham@mde.state.md.us.

Sincerely,

Melissa Chatham
Technical Review and Coordination
Science Services Administration

cc: File
April 10, 2009

Ms. Melissa Chatham
Maryland Department of the Environment
1800 Washington Boulevard
Baltimore, MD 21230

Re: Comments on Draft WV TMDLs
Youghiogheny River Watershed

Dear Ms. Chatham:

Thank you for MDE’s comments regarding West Virginia Draft TMDLs in the Youghiogheny River watershed. Your comments were carefully considered and TMDL revisions have resulted from them. This letter describes the revisions and addresses the other concerns raised in your letter.

The draft pH TMDLs that were advertised included acidity reductions that would ensure attainment of the West Virginia pH water quality criterion (between 6.0 and 9.0 standard units at all times) but did not ensure attainment of Maryland’s pH criteria (6.5 - 8.5 standard units, instantaneously) at the location where the subject streams exit West Virginia and enter Maryland. In response to your comment, the subject streams were remodeled. Acidity load allocations were reduced to the extent necessary to ensure that pH would be greater than 6.5 standard units at all times at the most downstream West Virginia location. The pH allocation spreadsheet has been revised to display new acidity TMDLs and load allocations for Buffalo Run and Laurel Run and Section 2.2, Section 9.6.1, Table 9-2, and Table 10-3 of the report document were updated to capture the revisions.

Because only fecal coliform pathogen indicator criteria are provided in West Virginia water quality standards, Enterococci and E. coli were not evaluated in this TMDL development project. Source and water quality information is not available for those parameters in West Virginia. Given the general consistency of the traditional 200/400 fecal coliform criteria and the 126 E.coli criteria, it is anticipated that the source loading reductions that are necessary to attain the West Virginia fecal coliform criteria would also result in attainment of Maryland’s alternative pathogen indicator criteria at the border locations.

Promoting a healthy environment.
Because of the different biological indices, impairment decision methodologies, TMDL modeling methodology and scale, stream monitoring frameworks and pollutant source characterization methodologies employed by each state, comparison of the West Virginia iron TMDLs and the Maryland sediment TMDL cannot provide absolute conclusions. However, because sediment was directly modeled in the development of the West Virginia iron TMDLs, the end products of both TMDL development efforts can be evaluated. Through consideration of the following information, we anticipate that Maryland will conclude that the West Virginia TMDLs call for sediment reductions in Snowy Creek and Laurel Run that are commensurate with loading reductions prescribed in the Maryland TMDL.

- The Maryland sediment TMDL characterized the West Virginia (or “upstream”) baseline sediment loading as 5466 tons sediment/yr, and prescribed a 29% sediment reduction that resulted in an allocated load of 3834 tons sediment/yr.
- The modeled sediment loading associated with allocated iron conditions in the West Virginia TMDLs is 560 tons sediment/yr.
- Approximately 44,600 acres of West Virginia land drains to Youghiogheny River. The area-normalized, sediment load allocated to West Virginia by the Maryland TMDL is approximately 0.086 tons sediment/acre/yr.
- Snowy Creek and Laurel Run drainage areas encompass approximately 19,000 acres, or approximately 43% of the West Virginia drainage to Youghiogheny River. The iron TMDLs presented for Snowy Creek and Laurel Run have associated sediment loadings that are approximately one-third of the allocated, area-normalized loading of the Maryland sediment TMDL. (0.029 and 0.031 tons sediment/acre/yr, respectively)
- Although they were not modeled for iron or sediment, the West Virginia streams draining the remaining 25,600 acres were not found to be iron impaired or biologically impaired by sedimentation, and do not likely contribute extreme sediment loads to the Youghiogheny River.

The following table describes the baseline and allocated sediment loads associated with Snowy Creek and Laurel Run at their most downstream, West Virginia locations (i.e. where the subject streams exit West Virginia and enter Maryland). The “allocated” sediment load is that which is associated with the iron TMDLs for each stream.

<table>
<thead>
<tr>
<th>SUBID</th>
<th>Stream</th>
<th>Drainage Area (acres)</th>
<th>Baseline Sediment Load (tons/yr)</th>
<th>“Allocated” Sediment Load (tons/yr)</th>
<th>Area-normalized “Allocated” Load (tons/ac/yr)</th>
<th>Sediment Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>Snowy Creek</td>
<td>12,629</td>
<td>677</td>
<td>364</td>
<td>0.0288</td>
<td>47</td>
</tr>
<tr>
<td>137</td>
<td>Laurel Run</td>
<td>6416</td>
<td>202</td>
<td>196</td>
<td>0.0306</td>
<td>3</td>
</tr>
</tbody>
</table>
The Snowy Creek iron TMDL has an associated 47% sediment reduction from baseline conditions and sediment loading that is well below the area-normalized sediment loading from the Maryland TMDL. The Laurel Run sediment reduction from baseline conditions is only 3%, but the Laurel Run watershed in West Virginia is over 90% forested. AML continuous discharges are primarily responsible for the iron impairment. Non-AML upland sediment sources are represented but not reduced. Although the Laurel Run iron TMDL does not have a significant sediment reduction associated with it, the modeled, area-normalized sediment loading associated with the iron TMDL allocation condition is well below that which may be interpreted from the Maryland sediment TMDL.

Our TMDL development effort did not include any evaluation of West Virginia or Maryland turbidity water quality criteria. Similar to the iron/sediment association described above, there are also turbidity reductions that would be associated with the iron reductions prescribed by our TMDLs. However, those turbidity reductions can’t be quantified with available information. WVDEP recognizes its responsibility to protect downstream waters and will cooperate fully with MDE if future Maryland assessments and/or TMDL development projects indicate a need to further prescribe pollutant reductions (bacteria or turbidity) from West Virginia sources.

Hopefully, this letter addresses your comments and questions. The subject TMDLs are being forwarded to EPA Region III for approval. Copies of your comment letter and this response will be included in the Public Participation section of the final draft report. If you have any questions, please feel free to contact Dave Montali at (304) 926-0499 (x1063).

Sincerely,

Scott G. Mandirola
Acting Director
13.0 REASONABLE ASSURANCE

Reasonable assurance for maintenance and improvement of water quality in the affected watershed rests primarily with two programs. The NPDES permitting program is implemented by WVDEP to control point source discharges. The West Virginia Watershed Network is a cooperative nonpoint source control effort involving many state and federal agencies, whose task is protection and/or restoration of water quality.

13.1 NPDES Permitting

WVDEP’s Division of Water and Waste Management (DWWM) is responsible for issuing non-mining NPDES permits within the State. WVDEP’s Division of Mining and Reclamation (DMR) develops NPDES permits for mining activities. As part of the permit review process, permit writers have the responsibility to incorporate the required TMDL WLAs into new or reissued permits. New facilities will be permitted in accordance with future growth provisions described in Section 11.0.

Both the permitting and TMDL development processes have been synchronized with the Watershed Management Framework cycle, such that TMDLs are completed just before the permit expiration/reissuance time frames. The reissuance of permits for existing facilities in the Youghiogheny River watershed is scheduled to begin in July 2009.

13.2 Watershed Management Framework Process

The Watershed Management Framework is a tool used to identify priority watersheds and coordinate efforts of state and federal agencies with the goal of developing and implementing watershed management strategies through a cooperative, long-range planning effort.

The West Virginia Watershed Network is an informal association of state and federal agencies, and nonprofit organizations interested in the watershed movement in West Virginia. Membership is voluntary and everyone is invited to participate. The Network uses the Framework to coordinate existing programs, local watershed associations, and limited resources. This coordination leads to the development of Watershed Based Plans to implement TMDLs and document environmental results.

The principal area of focus of watershed management through the Framework process is correcting problems related to nonpoint source pollution. Network partners have placed a greater emphasis on identification and correction of nonpoint source pollution. The combined resources of the partners are used to address all different types of nonpoint source pollution through both public education and on-the-ground projects.

Among other things, the Framework includes a management schedule for integration and implementation of TMDLs. In 2000, the schedule for TMDL development under Section 303(d) was merged with the Framework process. The Framework identifies a six-step process for developing integrated management strategies and action plans for achieving the state’s water quality.
quality goals. Step 3 of that process includes “identifying point source and/or nonpoint source management strategies - or Total Maximum Daily Loads - predicted to best meet the needed [pollutant] reduction.” Following development of the TMDL, Steps 5 and 6 provide for preparation, finalization, and implementation of a Watershed Based Plan to improve water quality.

Each year, the Framework is included on the agenda of the Network to evaluate the restoration potential of watersheds within a certain Hydrologic Group. This evaluation includes a review of TMDL recommendations for the watersheds under consideration. Development of Watershed Based Plans is based on the efforts of local project teams. These teams are composed of Network members and stakeholders having interest in or residing in the watershed. Team formation is based on the type of impairment(s) occurring or protection(s) needed within the watershed. In addition, teams have the ability to use the TMDL recommendations to help plan future activities. Currently there are no active watershed associations in this watershed; however additional information regarding upcoming Network activities can be obtained from the Monongahela Basin Coordinator, Lou Schmidt (louschmidt@frontiernet.net).

13.3 Public Sewer Projects

Within WVDEP DWWM, the Engineering and Permitting Branch’s Engineering Section is charged with the responsibility of evaluating sewer projects and providing funding, where available, for those projects. All municipal wastewater loans issued through the State Revolving Fund (SRF) program are subject to a detailed engineering review of the engineering report, design report, construction plans, specifications, and bidding documents. The staff performs periodic on-site inspections during construction to ascertain the progress of the project and compliance with the plans and specifications. Where the community does not use SRF funds to undertake a project, the staff still performs engineering reviews for the agency on all POTWs prior to permit issuance or modification. For further information on upcoming projects, a list of funded and pending water and wastewater projects in West Virginia can be found at http://www.wvinfrastructure.com/projects/index.html.

13.4 AML Projects

Within WVDEP, the Office of Abandoned Mine Lands and Reclamation (AML&R) manages the reclamation of lands and waters affected by mining prior to the passage of the Surface Mining Control and Reclamation Act (SMCRA) in 1977. Title IV of the act addresses adverse impacts associated with abandoned mine lands. Funding for reclamation activities is derived from fees placed on coal mined which are placed in a fund and annually distributed to state and tribal agencies.

Various abandoned mine land reclamation activities are addressed by the program as necessary to protect public health, safety, and property from past coal mining and to enhance the environment through the reclamation and restoration of land and water resources. Portions of the annual grant are also used to repair or replace drinking water supplies that were substantially damaged by pre-SMCRA coal mining and to administer the program.
In December 2006, Congress passed legislation amending SMCRA and the Title IV program and in November 2008, the Office of Surface Mining finalized rules to implement the amendments. After an initial ramp-up period, AML&R will realize significant increases in its annual reclamation funding and the flexibility to direct a larger portion of those funds to address water resource impacts from abandoned mine drainage (AMD).

Title IV now contains a “30% AMD set-aside” provision that allows a state to use up to 30% of its annual grant to address AMD problems. In determining the amount of money to set-aside, AML&R must balance its multiple areas of responsibility under the program and ensure that funding is available for perpetual operation and maintenance of treatment facilities. In regard to water resource impacts, project prioritization will consider treatment practicability and sustainability and will be accomplished under a methodology that provides for the efficient application of funds to maximize restoration of fisheries across AML impacted areas of the State.

14.0 MONITORING PLAN

The following monitoring activities are recommended:

14.1 NPDES Compliance

WVDEP’s DWWM and DMR have the responsibility to ensure that NPDES permits contain effluent limitations as prescribed by the TMDL WLAs and to assess and compel compliance. Permits will contain self-monitoring and reporting requirements that are periodically reviewed by WVDEP. WVDEP also inspects treatment facilities and independently monitors NPDES discharges. The combination of these efforts will ensure implementation of the TMDL WLAs.

14.2 Nonpoint Source Project Monitoring

All nonpoint source restoration projects should include a monitoring component specifically designed to document resultant local improvements in water quality. These data may also be used to predict expected pollutant reductions from similar future projects.

14.3 TMDL Effectiveness Monitoring

TMDL effectiveness monitoring should be performed to document water quality improvements after significant implementation activity has occurred where little change in water quality would otherwise be expected. Full TMDL implementation will take significant time and resources, particularly with respect to the abatement of nonpoint source impacts. WVDEP will continue monitoring on the rotating basin cycle and will include a specific TMDL effectiveness component in waters where significant TMDL implementation has occurred.
15.0 REFERENCES

